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 Although species distribution modelling (SDM) is widely accepted among the scientifi c community and is increasingly 
used in ecology, conservation biology and biogeography, methodological limitations generate potential problems for its 
application in macroecology. Using amphibian species richness in North and South America, we compare species richness 
patterns derived from SDM maps and  ‘ expert ’  maps to evaluate if: 1) richness patterns derived from SDM are biased toward 
climate-based explanations for diversity when compared to expert maps, since SDM methods are typically based on climatic 
variables; and 2) SDM is a reliable tool for generating richness maps in hyperrich regions where point occurrence data are 
limited for many species. We found that although three widely used SDM methods overestimated amphibian species rich-
ness in grid cells when compared to expert richness maps in both North and South America due to systematic overestimation 
of range sizes, diversity gradients were reasonably robust at broad scales. Further, climatic variables statistically explained 
patterns of richness at similar levels among the diff erent richness sources, although climatic relationships were stronger in 
the much better known North America than in South America. We conclude that in the face of the high deforestation rates 
coupled with incomplete data on species distributions, especially in the tropics, SDM represents a useful macroecological 
tool for investigating broad-scale richness patterns and the dynamics between species richness and climate.   

 Th e geographic distributions of species represent the basic 
units of macroecological analysis. For a few taxonomic groups, 
expert range maps now exist for most geographic areas and 
all known species, which have allowed the proliferation 
of macroecological studies performed at either the global 
scale (e.g. mammals: Sechrest 2003; birds: Hawkins et al. 
2007; amphibians: Buckley and Jetz 2007) or over broad 
regions, such as Australia, Europe, and North America 
(Dijkstra and Lewington 2006, Montoya et al. 2007, 
Hawkins 2010). However, for most taxonomic groups, and 
particularly in the hyperdiverse tropics, range maps either 
do not exist or are very imprecise and incomplete, leaving 
us with the problem of how to conduct macroecological 
analyses in these situations. 

 An alternative to expert range maps is to approximate 
species ’  distributions with species distribution modelling 
(SDM) techniques (Elith and Burgman 2002, Guisan and 
Th uiller 2005, Elith et al. 2006), which associate species 
point occurrence and environmental data (generally precipi-
tation and temperature, as well as more derived measures) 
at each occurrence point to generate a species distribution 
map. Although point data may be incomplete and geograph-
ically biased, a wealth of occurrence records exists for many 
species and is becoming available on electronic databases. 
After being combined with digital environmental variables 
through some SDM method, new range maps can be gener-
ated for those species for which expert maps are not avail-
able. Subsequently, the distribution maps can be overlaid 

and summed in a predefi ned point or grid system (hereafter 
SDM richness map) for studies of species richness patterns, 
as is usually done with range maps generated by expert opin-
ion (hereafter expert richness map) (La Sorte and Hawkins 
2007, Hawkins et al. 2008, Zafra-Calvo et al. 2010). 

 As SDM methods are generally based exclusively or 
primarily on climatic/productivity variables, and these vari-
ables are known to have strong associations with broad-scale 
geographic patterns of species richness (Hawkins et al. 2003, 
Buckley and Jetz 2007, Field et al. 2009), distribution maps 
generated by SDM are widely accepted among the scientifi c 
community and are being increasingly used in a range of 
research fi elds (Franklin 2010). On the other hand, range 
maps generated by SDM are expected to overpredict the dis-
tribution limits of species, predicting presence where it is 
known to be truly absent (errors of commission). Th is occurs 
because many SDM methods are unable to evaluate absences 
generated by species ’  evolutionary history, dispersal limita-
tions, and biotic interactions with other species (Graham 
and Hijmans 2006, Pineda and Lobo 2009). 

 Methodological limitations of SDM methods generate 
potential problems for their application in macroecological 
analysis. One could argue that SDM richness maps, gener-
ated by adding up individual SDM range maps of a given 
taxon in a pre-defi ned grid system, have stronger climatic 
relationships than richness maps generated by other species 
richness mapping methods, such as expert richness maps 
(Hawkins et al. 2008). So, because SDMs are commonly 
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based on climatic variables, does it necessarily follow that 
SDM richness maps put too much emphasis on climate 
as a predictor of gradients? Th at is, if we generate a map 
of taxon richness for a group based on SDMs constructed 
using climate variables, would the richness pattern refl ect 
climatic variation more than the pattern identifi ed using less 
direct links between climate and richness (i.e. derived from 
range maps generated by experts on the group)? Th us, the 
fi rst aim of this study was to quantify the extent to which 
SDM richness maps overestimate links to climate relative 
to expert richness maps, using amphibians as a model sys-
tem. Secondly, how well do SDM richness maps perform as 
sources of richness patterns when distribution data are lim-
ited, as will often be the case in the tropics? In the absence 
of expert maps, range maps derived from SDMs may be the 
only ones available for most taxonomic groups in South 
America, Africa or Asia, as well as for many groups in North 
America, Europe and Australia, and evaluations of their 
ability to generate sensible geographic richness patterns are 
needed. To answer this question, we compared results for 
North America north of Mexico, which harbors relatively 
few well sampled amphibian species, and South America, 
where many more species occur and with expert range maps 
available for most of them, but simultaneously with far fewer 
point data for most species.  

 Methods  

 Point occurrence data and expert range maps 

 Point occurrence records for North and South American 
amphibians were obtained from three sources that provide 
open access to occurrence data from biological surveys and 
museum collections: the Global Biodiversity Information 
Facility (GBIF:  �  www.gbif.org  �  ; Yesson et al. 2007), 
HerpNET ( �  www.herpnet.org  � ), and SpeciesLink 
( �  http://splink.cria.org.br  � ) databases. All records were 
carefully examined for probable errors, and the nomencla-
ture of species was checked for synonymies and updated 
according to the American Museum of Natural History 
(AMNH) amphibian database (Frost 2010). We removed 
from our dataset all species with fewer than fi ve occurrence 
records, as well as introduced species (e.g.  Lithobates catesbe-
ianus  and  Xenopus laevis  in South America). We also deleted 
nine species for which there were occurrence records but no 
expert range maps. Mexican records were included in the 
North American dataset when the species ’  range extended 
north of the Mexico – USA border. We were then able to gen-
erate SDM range maps for 219 species in North America 
north of Mexico (with a total of 49 104 occurrence points) 
and 536 species in South America (with a total of 15 080 
occurrence points) (Supplementary material Appendix 1 
and 2). Finally, of the amphibian species currently recorded 
in the USA and Canada (296 species) and South America 
(2461 species) (AmphibiaWeb 2010), we obtained expert 
range maps for 268 and 2265 species, respectively, from the 
International Union for Conservation of Nature (IUCN) 
portal ( �  www.iucnredlist.org/technical-documents/spatial-
data  � ). It is important to emphasize that the expert maps 
represent the areas where a particular species can be expected 

to occur, although, within these areas, it will be found only in 
suitable habitats. Th us, overprediction is an inherent 
methodological limitation of these kinds of range maps 
(Graham and Hijmans 2006), although they may some-
times function very well at grains greater than 50 � 50 km 
(Hawkins et al. 2008).    

 Species distribution modelling 

 We generated three sets of modeled ranges based on one 
bioclimatic envelope method (BIOCLIM) and two machine 
learning methods (OM-GARP and MAXENT). BIOCLIM 
characterizes sites that are located within the environ-
mental hyper-space occupied by a species, in which the 
potential climatic domain is the multidimensional enve-
lope that encompasses all recorded locations of the species 
(Nix 1986). OM-GARP is a version of GARP (Anderson 
et al. 2003) implemented in openModeller software (Mu ñ oz 
et al. 2011), which uses a genetic algorithm to select a set of 
rules that best predicts the species ’  distributions (Stockwell 
and Peters 1999). MAXENT estimates species ’  distributions 
by fi nding the distribution of maximum entropy (i.e. clos-
est to uniform) subject to the constraint that the expected 
value of each environmental variable (or its transform and/
or interactions) under this estimated distribution matches 
its empirical average (Phillips et al. 2006). BIOCLIM uses 
only presence data for model building, whereas OM-GARP 
and MAXENT use both presence and pseudoabsence data 
randomly sampled from the calibration area. For MAXENT, 
we entered 25% of the sample records as  ‘ random test per-
centage ’ , which means that the program randomly set aside 
25% of the records for testing, i.e. 75% of the dataset was 
used for calibration (training) and the remaining 25% used 
for model evaluation (testing). 

 All three modelling methods are widely used and are 
known to have reasonable performance, but MAXENT tends 
to outperform OM-GARP, which in turn tends to outper-
form BIOCLIM (Elith et al. 2006, Giovanelli et al. 2010). 
It is important to emphasize that despite the growing litera-
ture generating methodological improvements in SDM (e.g. 
model assessment with a small number of occurrence records: 
Pearson et al. 2007) and the infl uence of large calibration 
areas (Giovanelli et al. 2010), we performed all modelling 
methods with the same set up and calibration areas (one for 
northern North America and one for South America). We 
adopted this procedure because the large number of species 
is better suited to a standardized procedure than to a species-
by-species treatment that would be logistically complex and 
diffi  cult to interpret. BIOCLIM and OM-GARP maps were 
generated in the openModeller 1.1.0 with default settings 
(Mu ñ oz et al. 2011; available at   �  http://openmodeller.
sourceforge.net/  � ), whereas MAXENT maps were gener-
ated in MAXENT 3.3.2, also with default settings (Phillips 
et al. 2006; available at   �  www.cs.princeton.edu/ ∼ schapire/
maxent/  � ), but we deselected the option  ‘ extrapolate ’ , in 
order to accept results only in areas where environmen-
tal conditions fall within the range of the calibration area 
(Giovanelli et al. 2008, Th om é  et al. 2010). 

 Th e environmental variables used to model species dis-
tributions were selected to describe general climatic trends 
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(i.e. mean values), variation in temperature and precipitation 
over time, and potential physiological limits for amphibians 
(Nix 1986). Specifi cally, we used the following seven cli-
matic variables, obtained from the WorldClim database at 
a spatial resolution of 10 km (Hijmans et al. 2005): annual 
mean temperature, temperature seasonality, minimum tem-
perature of the coldest month, temperature annual range, 
annual precipitation, precipitation seasonality, and precipi-
tation of the warmest quarter. 

 Th e SDM of each species was evaluated by the receiver 
operating characteristic (ROC) curve, a threshold-indepen-
dent method that plots the true positive against the false pos-
itive fractions of occurrence over a large range of thresholds 
(Elith and Burgman 2002). Th e area under the curve (AUC) 
is an important summary statistic for ROC plots, which 
ranges from 0 to 1. A value up to 0.5 implies no discrimina-
tion, equivalent to random predictions. AUC values of 0.75 
or above are generally considered suffi  ciently discriminatory 
to be helpful (Elith and Burgman 2002). 

 To create the fi nal species richness maps, we generated 
binary predictive maps for each SDM method using thres-
hold values. Diff erent approaches have been employed for 
setting thresholds (Liu et al. 2005), but most techniques 
depend on balancing false-positive and false-negative pre-
dictions, applicable only when absence data are available 
(Pearson et al. 2007), which is not the case here. Although 
no general rule has been developed for diff erent algorithms 
(Phillips et al. 2006), we attempted to establish threshold 
values that balance commission and omission errors, i.e. 
the fi nal maps are supposed to be neither under nor over-
represented. Th us, BIOCLIM binary maps were gener-
ated considering marginal areas (threshold value of 50% in 
openModeller settings: Mu ñ oz et al. 2011). For OM-GARP 
maps, after an initial fi lter that removes very large and very 
small predictions from consideration (see details in Peterson 
et al. 2008), the resulting best subsets models are summed to 
produce a best ensemble estimate of geographic projection. 
Finally, openModeller generates the fi nal distribution binary 
range map, using the threshold percentage of 70% (default 
setting). MAXENT binary maps were generated using a 
threshold of 10, i.e. rejecting the lowest 10% of possible 
predicted values. Th is fi xed cumulative value at 10% can 
be considered a less conservative threshold when compared 
to others (e.g. minimum training presence) and maximizes 
the agreement between observed and predicted distributions 
(Phillips et al. 2006, Pearson et al. 2007, Milanovich et al. 
2010). 

 As we used continental calibration areas for the SDMs, 
the diff erent modelling methods generated patchy potential 
distributions with large gaps throughout either North or 
South America for some species, which are unrealistic under 
most biologically plausible scenarios. Rather, these are envi-
ronmentally suitable areas of a given species instead of pre-
dicted distributions. Th e most common examples include 
1) North American species occurring on either the east or west 
coast with isolated predicted areas on the opposite coast; and 
2) South American species endemic to the Atlantic Rainforest 
(east coast) with isolated predicted areas in the Amazon 
forest. Both of these predictions are unrealistic, because 
colonization of widely separated patches will be limited by 
topography (e.g. the Rocky Mountains in north) or by the 

absence of a climatically suitable region between discon-
nected suitable areas (e.g. Cerrado in the south). Because we 
were interested in neither unrealistic potential distributions 
nor in potential areas for colonization or introduction, we 
deleted isolated predicted distribution areas more than 400 
km away from any known occurrence record of a species.  

 Species richness maps 

 Species richness maps were generated for each map source 
(expert, BIOCLIM, OM-GARP, and MAXENT) by sum-
ming in ArcGIS the presence/absence maps in 27.5 � 27.5 
km (for mapping) and 110 � 110 km (for statistical analy-
sis) grids. For expert maps, we generated two richness maps: 
one based in all species for which range maps were available 
( ‘ all ’  dataset), and another only with those species for which 
we generated SDM maps ( ‘ modelled ’  dataset). 

 Because the number of species varied between expert and 
SDM maps (primarily for South America: 536 species with 
SDM maps and 2265 species with expert maps), we per-
formed a simple correlation between the  ‘ all ’  and  ‘ modelled ’  
richness datasets, for North and South America separately. 
Th is allowed us to assess how much information on the over-
all richness gradient was lost by removing species that could 
not be modelled. We also performed a series of correlations 
between expert and SDM richness maps to quantify the sim-
ilarity of richness gradients.   

 Range size maps 

 All else being equal, richness maps based on SDMs will over-
estimate absolute richness values due to the fact that range 
sizes are primarily or exclusively generated considering only 
climate (i.e. ignoring more diffi  cult to measure factors like 
biotic interactions and/or evolutionary constraints), and as a 
result, will overestimate the extent of occurrence of some spe-
cies. Although the extent to which ranges are overestimated 
in any particular study will be diffi  cult to assess a priori, when 
it does occur these regions are likely to have spatial structure, 
since the ranges of montane and other narrowly distributed 
species will probably be overestimated to a greater extent than 
broadly distributed species mostly found in lowlands. To 
explore how well the modelling methods compare to expert 
maps with respect to identifying geographic range size pat-
terns, a second metric of wide interest to macroecologists, we 
generated and mapped mean log 10  range sizes in each cell.   

 Selection of climate models of amphibian richness 

 To evaluate links between environmental variables and 
amphibian species richness in North and South America, 
we extracted for each cell the values of the seven environ-
mental variables used for modeling species distributions 
(see above), as well as standard deviation of elevation, which 
is a measure of topographic heterogeneity (elevation data 
available at   �  www.ngdc.noaa.gov/ecosys/cdroms/ged_iia/
datasets/a13/fnoc.htm  � ); and annual actual evapotranspi-
ration (AET), a measure of water-energy balance (available 
at  �  http://gcmd.gsfc.nasa.gov  � ). 
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0.97  �  0.052 (BIOCLIM), 0.98  �  0.031 (OM-GARP) 
and 0.98  �  0.019 (MAXENT). In South America, all mean 
AUC values were 0.96 ( �  0.066 for BIOCLIM,  �  0.056 
for OM-GARP and  �  0.046 for MAXENT). Th e species 
richness patterns identifi ed by the expert maps using the 
 ‘ all ’  and  ‘ modelled ’  datasets were almost perfectly associated 
in North America (r  �  0.998) (Fig. 1a, b) and very similar 
in South America (r  �  0.953) (Fig. 2a, b), although maxi-
mum richness was necessarily lower when based on the sub-
sets of species for which there were suffi  cient numbers of 
records for modelling (i.e. the  ‘ modelled ’  data set). Patterns 
of species richness predicted by expert vs SDM maps were 
also correlated in both continents, but more strongly in 
North America (ranging from r EXPERT � OM-GARP   �  0.865 to 
r EXPERT � BIOCLIM   �  0.919) (Fig. 1) than in South America 
(r EXPERT � OM-GARP   �  0.621 to r EXPERT � BIOCLIM   �  0.758) 
(Fig. 2). 

 As refl ected by the strong correlations among species 
richness estimates in North America, the richness patterns 
generated by both expert and SDM maps identifi ed the 
southeast as broadly supporting the most species (Fig. 1). 
However, some diff erences were found among the expert and 
SDM maps regarding smaller-scale distributions of richness 
within this region (Fig. 1), and all modeling methods over-
estimated maximum richness relative to expert-map based 
estimates, MAXENT in particular (cf. Fig. 1b, e). All three 
SDM methods also overpredicted richness in the mountain-
ous west, especially in the coastal ranges, Cascades and the 
Sierra Nevada (Fig. 1 and Supplementary material Appendix 
3, Fig. A3). On the other hand, correlations between spe-
cies-level range size estimates for expert-map based ranges 

 Th e relationships between the environmental variables 
and patterns of amphibian species richness were examined by 
generating a series of ordinary least-squares (OLS) multiple 
regressions. Th e model selection approach was based on the 
lowest Akaike information criterion (AIC). Th is study was not 
designed to determine what combination of environmental 
variables are most strongly associated with species richness pat-
terns of amphibians (Rodr í guez et al. 2005); rather we wanted 
to compare models including a range of environmental vari-
ables for richness data derived from diff erent sources (expert 
based vs SDM based). Th us, we performed OLS regressions 
with two sets of environmental variables: 1) including the 
seven climatic variables used for modeling species distribu-
tions, and 2) including climatic/productivity and topographic 
variables that are known to be strong correlates for a wide range 
of plant and animal groups (Hawkins et al. 2003, Field et al. 
2009). In addition, we examined two sets of response variables 
( ‘ all ’  and  ‘ modelled ’  datasets), to determine if the richness data-
set containing all species ( ‘ all ’  dataset) results in substantially 
diff erent models than the richness dataset containing only the 
species included in the SDM ( ‘ modelled ’  dataset). Th en, com-
bining the two sets of explanatory and the two sets of response 
variables, four sets of regression models were generated in each 
continent. Th e regressions were run in spatial analysis in mac-
roecology (SAM) ver. 4.0 (Rangel et al. 2010).    

 Results 

 All three modelling methods had strong predictive power, 
with mean AUC  �  SD values in North America of 

  

Figure 1.     Geographical patterns of amphibian species richness in North America north of Mexico for (a) expert maps ( ‘ all ’  dataset), (b) 
expert maps ( ‘ modelled ’  dataset), (c) BIOCLIM maps, (d) OM-GARP maps, and (e) MAXENT maps. Data resolved to 27.5 � 27.5 km 
grain. Th e SDM maps include only those species in the  ‘ modeled ’  expert dataset.  
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in the tropics, due to smaller scale climatic variation captured 
in modelled ranges but not incorporated into expert ranges. 
As in North America, MAXENT overestimated maximum 
species richness relative to expert-based estimates (Fig. 2). 

 Expert maps of all South American species generated 
strong spatial patterns in mean log 10  range sizes, with species 
widely distributed in lowlands and narrowly distributed in 
the Andes and to a lesser extent in the Atlantic forest (Fig. 4a). 
Removing the species with few occurrence records increased 
mean range sizes in parts of the Andes, but did not greatly 
distort the general continental pattern (Fig. 4b). However, as 
expected, all SDM methods overestimated range sizes in the 
mountains, especially MAXENT (Fig. 4c, d, e). 

 Multiple regression models of expert-based richness using 
general climate variables generated models that explained ca 
81% of the variance in richness in North America and ca 

vs SDM-based ranges were variable, ranging from 0.411 for 
MAXENT ranges to 0.698 for BIOCLIM ranges. Even so, 
all modelling methods greatly overestimated North American 
range sizes on average, with MAXENT predicting ranges 
more than an order of magnitude larger than expert-based 
ranges (Table 1). Th e discrepancies between expert and mod-
elled range sizes were most notable across the southern USA, 
although range sizes tended to be overestimated everywhere 
(Fig. 3). 

 In South America, expert and SDM richness maps identi-
fi ed general patterns of maximum species richness in western 
Amazon and central Atlantic forest (Fig. 2). However, SDM 
richness maps overestimated maximum species richness, espe -
cially in the northern Andes and in central/southeastern 
Brazil (Fig. 2 and Supplementary material Appendix 4, 
Fig. A4). Modelled richness patterns were also much patchier 

  

Figure 2.         Geographical patterns of amphibian species richness in South America for (a) expert maps ( ‘ all ’  dataset), (b) expert maps ( ‘ mod-
elled ’  dataset), (c) BIOCLIM maps, (d) OM-GARP maps, and (e) MAXENT maps. Presentation as in Fig. 1.   

  Table 1. Mean log 10  range sizes ( �  SD) based on expert maps and three species distribution modelling methods. The expert datasets 
comprise all species ( ‘ all ’ ) or the subsets of species included in the SDM datasets ( ‘ modelled ’ ). Back-transformed means (in km 2 ) are provided 
parenthetically.  

Expert ( ‘ all ’ ) Expert ( ‘ modelled ’ ) BIOCLIM OM-GARP MAXENT

North America 4.596  �  1.402 4.597  �  1.199 5.277  �  1.160 5.567  �  0.996 5.779  �  0.653
(39 446) (39 537) (189 234) (368 978) (601 174)

South America 3.582  �  1.576 5.239  �  1.129 5.198  �  1.162 5.177  �  1.197 6.376  �  0.499
(3819) (173 380) (157 761) (150 314) (2 376 840)
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 Discussion 

 In parts of the world where range maps do not exist, as well 
as for taxa for which there are no local experts, the use of spe-
cies distribution modelling to generate richness maps repre-
sents a promising alternative methodology to understanding 
diversity patterns (Hawkins et al. 2008). However, key to 
their use is understanding how well the methods themselves 
perform. We found that the SDMs we evaluated are a mixed 
blessing for macroecological analyses, surprisingly robust in 
some respects, but less robust in others. 

 Although the methodology for generating species ’  distri-
butions is becoming increasingly statistically sophisticated 
(Zimmermann et al. 2010 and references therein), it is widely 
understood that ranges will generally be overestimated due 
to the diffi  culty of incorporating non-climatic range-limiting 
factors like biotic interactions, historical factors and dispersal 
limitation (Graham and Hijmans 2006, Pineda and Lobo 
2009). To the extent that this is true for any particular set of 
species, SDMs are likely to be of limited utility for studies 
of range size and evaluations of Rapoport ’ s rule. None of the 
methods we examined were able to reproduce the geographic 
structure of range sizes identifi ed using expert ranges, espe-
cially in South America. Tropical mountains are character-
ized by large numbers of small-ranged endemics, but this 
well documented signal was essentially undetectable in the 
Andes (Fig. 4). In much better studied North America, some 
spatial structure in range sizes was preserved in all three mod-
elled data sets (Fig. 3), but even there substantial signal was 

 

 Figure 3.         Geographical patterns of amphibian range sizes in North America north of Mexico for (a) expert maps ( ‘ all ’  dataset), (b) expert 
maps ( ‘ modelled ’  dataset), (c) BIOCLIM maps, (d) OM-GARP maps, and (e) MAXENT maps. Presentation as in  Fig. 1.  

65% in South America (Table 2). Th e best models based on 
SDM richness explained either lower or similar amounts of 
variance. Th at is, despite diff erences in the details of the rich-
ness gradients generated by modelling species ranges with 
climatic variables, the explanatory power of general climatic 
variables with respect to the richness gradients was not sub-
stantially aff ected. Th ere was a shift in the standardized coef-
fi cients of the specifi c climatic variables in North America, 
with annual temperature replacing AET as being strongest 
(Table 2) (cf. Rodr í guez et al. 2005), but these variables were 
themselves correlated (r  �  0.762), so instability in regression 
coeffi  cients is not surprising. In South America, AET had 
the strongest partial correlation with richness across all data 
sets (Table 2). 

 Regression models of richness containing the climatic 
variables used in the SDMs had slightly lower explanatory 
power than those for the general climatic variables (Table 3). 
Th e explanatory power of models of SDM-based richness 
was variable when compared to similar models of expert-
based richness, with SDM models being either equivalent 
to or slightly weaker than expert-based regression models. In 
North America, minimum temperature of the coldest month 
(TMIN) had the strongest relationship with richness across 
all models, whereas in South America regression coeffi  cients 
shifted in rank across data sets (Table 3). Irrespective, even 
when modelling richness using the same climatic variables 
used to generate the underlying species ranges, statistical 
relationships between richness and climate are not strongly 
biased.   
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lost in the south. Th e relatively better performance in North 
America might be related to two non-exclusive hypothesis: 1) 
North America has a very strong temperature gradient, and 
although humid tropical forest is only one of the biomes in 
South America (but which accounts for a considerable area), 
biotic factors are often presumed to have a stronger infl u-
ence in humid tropical forest in which amphibian richness 
is highest; and 2) North America has a much higher density 
of occurrence records than South America. Th e fi rst supposi-
tion may eventually be testable as SDM methods become 
more sophisticated and incorporate biotic interactions when 
generating range maps (Ara ú jo and Luoto 2007). 

 Th e second hypothesis is more of a problem, since the 
tropical forests of South America support very high species 
richness for many taxonomic groups, have one of the highest 
deforestation rates in the world (Whitmore 1997), and are 
less well studied than many other regions (e.g. North America 
and Europe). However, it is in the south where SDMs will be 
most often used to generate species distributions for entire 
taxonomic groups. Th us, unless all species being modelled 
are represented by a large number of records, expert range 
maps, despite their own limitations (La Sorte and Hawkins 
2007, Hawkins et al. 2008), almost certainly represent the 
most viable source for analyses of range sizes. 

  

Figure 4.         Geographical patterns of amphibian range sizes in South America for (a) expert maps ( ‘ all ’  dataset), (b) expert maps ( ‘ modelled ’  
dataset), (c) BIOCLIM maps, (d) OM-GARP maps, and (e) MAXENT maps. Presentation as in   Fig. 1.

 Absolute estimates of richness are also very likely to be 
too high when based on SDM maps, even when substantial 
numbers of species are excluded due to having too few occur-
rence records to permit range modelling. Expert range maps 
are widely recognized to generate false positives, i.e. detect 
presence where species is known to be truly absent, but 
SDM methods can even overestimate expert maps (Graham 
and Hijmans 2006, Hawkins et al. 2008, Pineda and Lobo 
2009, present study), which in turn can lead to elevated rich-
ness estimates. However, it should be remembered that no 
broad-scale range maps are able to measure small-scale rich-
ness accurately, so the fact that SDM-based maps generate 
higher diversity estimates than expert-based maps is not a 
serious problem when the goal is to understand geographical 
gradients rather than local richness. To estimate richness at 
local scales there is no substitute for in situ sampling. 

 Despite the issues with modelling ranges mentioned 
above, it remains that the general spatial patterns of richness 
are similar (although not identical) using all methods. We also 
found that climatic-based evaluations of the gradients were 
quite robust. Since broad-scale species richness patterns are 
generally strongly correlated with the richness of species with 
broad range sizes (Jetz and Rahbek 2002), we expected expert 
and SDM richness maps to have signifi cant relationships 
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  Table 3. Standardized coeffi cients for OLS environmental regression models for each richness data source, based on climatic variables used 
to generate SDMs. The model for each data source is the best as defi ned by AIC. The strongest coeffi cient for each model is highlighted in 
bold. Coeffi cients of determination (R 2 ) are also provided. Temp  �  annual mean temperature, TSeason  �  temperature seasonality, TMin  �  
minimum temperature of the coldest month, TRange  �  annual range in temperature, Precip  �  annual precipitation, PSeason  �  precipitation 
seasonality, PWQ  �  precipitation of the warmest quarter.  

Temp TSeason TMin TRange Precip PSeason PWQ R 2 

North America
Expert  –   ‘ all ’ – 0.86  1.33 – – �0.18 0.11 0.760
Expert  –   ‘ modelled ’ – 0.79  1.31 0.06 0.22 �0.18 0.11 0.762
BIOCLIM �0.60 0.28  1.94 0.52 0.27 �0.15 �0.05 0.799
OM-GARP �0.26 0.47  1.50 0.19 0.41 �0.11 �0.29 0.761
MAXENT �0.782 0.48  2.23 0.43 0.21 �0.21 �0.08 0.750

South America
Expert  –   ‘ all ’  0.94 �0.38 �0.84 �0.20 0.13 �0.25 0.18 0.665
Expert  –   ‘ modelled ’  1.57 �0.37 �1.51 �0.33 0.12 �0.27 �0.10 0.621
BIOCLIM 1.52 �0.59  �1.63 �0.38 �0.17 �0.33 0.24 0.572
OM-GARP 0.16 �0.46 – – �0.36 �0.21  0.59 0.537
MAXENT 1.91 �0.28  �1.92 �0.64 �0.49 �0.32 0.64 0.754

    Table 2. Standardized coeffi cients for OLS environmental regression 
models for each richness data source, using climatic and topo-
graphic variables typically associated with richness gradients of ani-
mal taxa.  The model for each data source is the best as defi ned by 
AIC.  The strongest coeffi cient for each model is highlighted in bold.  
Coeffi cients of determination (R2) are also provided.  AET = annual 
actual evapotranspiration, Temp = annual mean temperature, Precip 
= annual precipitation, TRange = annual range in temperature, 
ElevSD = standard deviation of elevation.

AET Temp Precip TRange ElevSD R 2 

North America
Expert  –   ‘ all ’  0.67 0.23 0.08 – 0.04 0.810
Expert  –  

 ‘ modelled ’ 
 0.65 0.24 0.08 – 0.04 0.806

BIOCLIM 0.40  0.48 0.06 �0.06 0.15 0.796
OM-GARP 0.27  0.49 0.07 �0.13 0.16 0.719
MAXENT 0.39  0.46 0.07 0.264 �0.06 0.722

 South America 
Expert  –   ‘ all ’  0.62 0.05 0.10 �0.10 � 0.664
Expert  –  

 ‘ modelled ’ 
 0.62 0.09 0.01 �0.06 �0.14 0.635

BIOCLIM  0.99 0.08 �0.29 �0.04 0.26 0.642
OM-GARP  0.91 – �0.19 �0.03 0.35 0.548
MAXENT  1.05 0.17 �0.33 0.14 0.28 0.613

with macro-scale climatic predictors, even when  �  75% of 
South American amphibians (most of them small-ranged 
Andean species) were excluded because of insuffi  cient point 
data to generate SDM maps. However, as the SDM ranges 
were generated solely with climatic variables, we expected 
the association of richness with climatic variables to be sub-
stantially stronger than patterns generated by an amalgama-
tion of expert opinions about species ranges. Th at is clearly 
not the case. Indeed, the fi nding that the explanatory power 
of regression models of richness are not infl ated when the 
underlying ranges are quantifi ed entirely by climate could be 
seen as evidence that climatic eff ects on species distributions 
and richness are so pervasive that they are similarly identifi ed 
regardless how the richness patterns are generated. 

 Although we found that regression models based on expert 
opinion were more similar to each other than to models 
based on SDM methods whether all species were included or 
not, coeffi  cients of determination between expert and SDM 

models are also reasonably similar. It also makes little diff er-
ence which types of climatic variables are utilized to exam-
ine richness-climate relationships, whether they are the same 
variables used to generate the ranges or more general climatic 
descriptors. Finally, climate-richness associations remain 
similar even when rare and narrowly distributed species are 
excluded, as in our modelled South American data sets. Th e 
similar correlations found for the  ‘ all ’  and  ‘ modelled ’  expert 
datasets are probably explained by the fact that the richness of 
narrowly (Andean) distributed species is more strongly cor-
related with small-grain climatic variables than with broad-
grain variables (Hawkins and Diniz-Filho 2006, Ruggiero 
and Hawkins 2008). And because we only use broad-grain 
climatic predictors, we also expect, for the same reason, that 
the continental climate-richness associations between expert 
and SDM models would not increase substantially with the 
inclusion of those small-ranged species. In the end, deleting 
most of the Andean amphibians from the data due to limited 
numbers of occurrence records does not alter the fact that 
South American frogs are richer in warm, wet places than in 
cold, dry ones, and actual evapotranspiration captures that 
relationship well over the entire continent. 

 A major diff erence in species richness patterns based on 
modelled ranges vs expert ranges was the patchiness of rich-
ness in relatively small areas in the latter cases, especially 
in South America (Fig. 2). Because expert range maps are 
coarse-grained representations of extents of occurrence of 
species, they are expected to generate smoother gradients 
than modelled ranges that are themselves complex and 
patchy. Further, our modelled ranges were generated at a 
 ∼ 10 km grain (the grain of the WorldClim database), so the 
richness data are a fi ne-grain representation as well. Since 
we do not know the real richness gradient of amphibians 
across South America at any grain, we cannot know whether 
the coarse-grain pattern generated by the expert maps or 
the fi ne-grained pattern generated by the SDMs is a more 
accurate representation of reality. From a macroecological 
perspective this does not seem to matter very much, since 
converting all data sets to a 110-km grain for statistical anal-
ysis resulted in similar regression models. Of course, stan-
dardized regression coeffi  cients sometimes shifted across data 
sets, but standardized coeffi  cients from multiple regression 
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models of richness patterns are unstable both in the face of 
the collinear predictor variables often included in climatic 
evaluations of diversity gradients and depending on which 
particular spatially explicit or OLS regression method is 
used (Bini et al. 2009). We did not conduct detailed evalu-
ations of covariances among predictors because we were 
interested in knowing how well climate explains the rich-
ness gradients derived from multiple sources, irrespective of 
what particular climatic variables have the strongest partial 
regression coeffi  cients. Th erefore, the fact that coeffi  cients 
sometimes change when diff erent richness data are used is 
not unusual and does not alter the main conclusion that 
the detection of statistical links between climate and rich-
ness are surprisingly robust to the source of the data. Similar 
levels of robustness have also been detected when diff erent 
sources of expert maps are used to conduct macroecological 
analyses (Mathias et al. 2004). 

 In conclusion, we suggest that SDM methods are a useful 
tool for macroecological analysis when no other option is 
available. On the other hand, it is important to emphasize 
that no method is perfect. Care is needed when interpreting 
richness patterns generated from SDMs due to their inherent 
tendency to overestimate species richness while at the same 
time missing many montane species due to data availability 
(in our case, we were forced to ignore  �  75% of amphibian 
species in South America). Th e former issue should become 
less of a problem as the methods become more sophisti-
cated, and additional non-climatic variables are included in 
the modelling process (Ara ú jo and Luoto 2007, Meier et al. 
2010, Pellissier et al. 2010), but generating complex distribu-
tion models for an entire taxonomic group in the tropics that 
may comprise hundreds or thousands of species presents its 
own challenges. It may also eventually be possible to devise 
methods to model narrowly-distributed species even when 
there are few occurrence records (Hernandez et al. 2006, 
Pearson et al. 2007). Irrespective, in the presence of human 
impacts and rapid climate change we do not have the luxury 
of waiting for perfect methods and data, and even imperfect 
SDM maps appear to capture climate–richness relationships 
as well as do expert maps.           
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