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 Among the statistical methods available to control for phylogenetic autocorrelation in ecological data, those based on 
eigenfunction analysis of the phylogenetic distance matrix among the species are becoming increasingly important tools. 
Here, we evaluate a range of criteria to select eigenvectors extracted from a phylogenetic distance matrix (using phyloge-
netic eigenvector regression, PVR) that can be used to measure the level of phylogenetic signal in ecological data and to 
study correlated evolution. We used a principal coordinate analysis to represent the phylogenetic relationships among 209 
species of Carnivora by a series of eigenvectors, which were then used to model log-transformed body size. We fi rst con-
ducted a series of PVRs in which we increased the number of eigenvectors from 1 to 70, following the sequence of their 
associated eigenvalues. Second, we also investigated three non-sequential approaches based on the selection of 1) eigenvec-
tors signifi cantly correlated with body size, 2) eigenvectors selected by a standard stepwise algorithm, and 3) the combina-
tion of eigenvectors that minimizes the residual phylogenetic autocorrelation. We mapped the mean specifi c component 
of body size to evaluate how these selection criteria aff ect the interpretation of non-phylogenetic signal in Bergmann ’ s rule. 
For comparison, the same patterns were analyzed using autoregressive model (ARM) and phylogenetic generalized least-
squares (PGLS). Despite the robustness of PVR to the specifi c approaches used to select eigenvectors, using a relatively 
small number of eigenvectors may be insuffi  cient to control phylogenetic autocorrelation, leading to fl awed conclusions 
about patterns and processes. Th e method that minimizes residual autocorrelation seems to be the best choice according 
to diff erent criteria. Th us, our analyses show that, when the best criterion is used to control phylogenetic structure, PVR 
can be a valuable tool for testing hypotheses related to heritability at the species level, phylogenetic niche conservatism and 
correlated evolution between ecological traits.   

 It is well known that the presence of spatial, temporal or 
phylogenetic autocorrelation poses both a challenge and an 
opportunity for the analysis of ecological and macroecologi-
cal datasets (Legendre 1993, Peres-Neto 2006). Th e challenge 
arises because standard statistical methods assume indepen-
dence among observations, so the presence of autocorrela-
tion tends to infl ate type I error rates (but see Revell 2010). 
However, the use of the new statistical methods developed to 
account for autocorrelation also provides opportunities for 
gaining much deeper insights into ecological/evolutionary 
patterns and processes. Th e gain will come from the fact that 
autocorrelation should not be considered only as a nuisance 
aff ecting signifi cance tests, but also as an interesting pattern 
resulting from ecological (e.g. population dispersal and neu-
tral dynamics) and evolutionary (e.g. niche conservatism and 
phylogenetic inertia) processes (Martins and Hansen 1996, 
Wiens and Graham 2005, Dray et al. 2006, Bellier et al. 
2007). 

 Among the statistical methods available to tackle autocor-
related data, those based on the extraction of eigenvectors 

from a matrix containing the levels of geographic, tempo-
ral or phylogenetic similarity among the units of analy-
sis are becoming increasingly important tools in ecology 
(Th ioulouse et al. 1995, Diniz-Filho et al. 1998, Borcard and 
Legendre 2002, Desdevises et al. 2003, Borcard et al. 2004, 
Diniz-Filho and Bini 2005, Dray et al. 2006, Dormann et al. 
2007, Griffi  th and Peres-Neto 2006, Peres-Neto et al. 2006, 
Blanchet et al. 2008, Siqueira et al. 2008, Angeler et al. 2009, 
Bini et al. 2009, Legendre et al. 2010). In these cases, eigen-
vectors represent, in a vector form, the relationship among 
units of analysis (e.g. species or sampling sites), and thus can 
be easily added as covariates in linear and non-linear mod-
els, being a fl exible and general tool useful for minimizing 
the undesirable eff ects of autocorrelation on signifi cance 
tests and, at the same time, allowing evaluation of the rela-
tive importance of processes generating spatial, temporal or 
phylogenetic autocorrelation. 

 In the phylogenetic context, Diniz-Filho et al. (1998) 
proposed the phylogenetic eigenvector regression (PVR) as 
a simpler and more fl exible alternative to Cheverud et al. ’ s 
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(1985) autoregressive model (ARM). Th e main goals of 
PRV and ARM are to estimate the magnitude of phyloge-
netic signal in data and estimate the evolutionary correla-
tion between traits and its associated probability. Th e logic 
underlying both variance partitioning methods, derived from 
quantitative evolutionary genetics, is that the total variation 
in a given trait (T) measured for n species can be partitioned 
into a phylogenetic (P) and a specifi c (S) component, so 
that T  �  P  �  S. Th e P-component expresses the part of the 
variation in T that is phylogenetically autocorrelated (usu-
ally expressed in a pairwise distance matrix  D  derived from 
a phylogeny), whereas the S-component is the unique varia-
tion in each species that arises after the divergence from the 
most recent common ancestor. Th e coeffi  cients of determi-
nation (R 2 ) of these models (i.e. PVR or ARM) measure the 
ratio P/T (or 1  –  S/T), which is an estimate of the amount 
of phylogenetic signal in the trait, so that a high R 2  indi-
cates that more phylogenetically-related species tend to be 
more similar for the trait (Cheverud et al. 1985, Gittleman 
and Kot 1990; but see Rohlf 2001). Moreover, patterns in 
the S-component can be interpreted as the result of inde-
pendent recent adaptive responses of species with respect to 
variation in another traits or to environmental variation (but 
see Harvey et al. 1995, Westoby et al. 1995a, b, Desdevises 
et al. 2003 for discussion and more complex interpretations 
of this partition). 

 PVR starts by extracting eigenvectors from a double-
centered phylogenetic distance matrix (using a principal 
coordinate analysis  –  PCoA  –  based on phylogenetic dis-
tances among species  –  Legendre and Legendre 1998), which 
are used as explanatory variables in a standard OLS multiple 
regression. Initial applications of PVR were focused on esti-
mating the phylogenetic signal in data using the model R 2  
(Morales 2000, see Sakamoto et al. 2010 for a recent applica-
tion), but it is also straightforward to use PVR to estimate the 
correlation between traits (i.e. by correlating S-components, 
as in ARM). Indeed, simulation studies have shown that 
PVR has acceptable type I and II errors rates when estimat-
ing these correlations, showing similar results to other meth-
ods, such as phylogenetic independent contrasts (PIC) and 
phylogenetic generalized least-squares (PGLS) under distinct 
evolutionary models (Diniz-Filho and Torres 2002, Martins 
et al. 2002). Desdevises et al. (2003) expanded the method 
using a partial regression approach to decouple the eff ects of 
ecological and phylogenetic (plus their overlap, interpreted 
as phylogenetic niche conservatism) components in trait 
variation. 

 Eigenvectors from a phylogenetic distance matrix refl ect 
the phylogenetic relationship among species in a vector form, 
and the fi rst eigenvectors tend to represent (or map) larger 
distances among species, thus expressing divergences closer 
to the root of the phylogeny. Rohlf (2001) criticized PVR 
stating that all eigenvectors would be needed to capture all 
phylogenetic information. Consequently, if all eigenvectors 
are used as predictors in a multiple regression model then all 
variability in a trait Y is explained (i.e. R 2   �  1), leaving no 
residual variation (so the S-component is zero). Although 
the reasoning is correct and PVR ’ s R 2  should be interpreted 
with caution, we emphasize that not all of them are actu-
ally necessary to model trait variation among species. Some 
carefully selected eigenvectors suffi  ce for modeling purposes, 

because rarely, if ever, traits are free from measurement error 
and will not evolve under very simple models throughout 
the phylogeny. Moreover, the advantage of PVR is that eigen-
vectors can deal with complex evolutionary patterns in a trait 
(e.g. allowing for non-stationarity and stasis, Diniz-Filho 
et al. 2010), and can also be incorporated in a range of sta-
tistical models to represent and quantify phylogenetic struc-
ture (Desdevises et al. 2003), as well as to model variation in 
discrete or categorical traits (Griffi  th and Peres-Neto 2006). 
We agree, however, that Rohlf  ’ s (2001) criticism highlights 
the need for a better evaluation of which and how many 
eigenvectors must be used in a PVR analysis, which is the 
main theme of this paper. 

 Th e problem of selecting eigenvectors generated by 
eigenfunction spatial analysis (i.e. principal coordinates of 
neighbor matrices PCNM, Borcard and Legendre 2002, 
Borcard et al. 2004; Moran ’ s eigenvector maps  –  MEM, 
Dray et al. 2006; spatial fi ltering, Griffi  th 2003) has been 
recently addressed by several authors (Diniz-Filho and Bini 
2005, Tiefelsdorf and Griffi  th 2007, Blanchet et al. 2008, 
Jombart et al. 2009). However, there is no consensus on how 
to select phylogenetic eigenvectors, despite the fact that a 
well-defi ned set of eigenvectors is of paramount importance 
for all the above mentioned techniques (Peres-Neto et al. 
2006, Griffi  th and Peres-Neto 2006). For instance, when 
unnecessary eigenvectors are included in PVR, the patterns 
of trait variation due to phylogenetic structure might be 
slightly overestimated, decreasing our ability to detect non-
phylogenetic patterns in trait variation (but see Peres-Neto 
et al. 2006 for distinct results in variance partition using spa-
tial eigenfunction analyses). On the other hand, using too 
few eigenvectors in PVR will leave residual autocorrelation 
so phylogenetic and non-phylogenetic patterns will be con-
fused in the S-component. 

 Th ere is an increasing interest in the application of phylo-
genetic methods to test hypotheses related to niche conserva-
tism (Cooper et al. 2010, Hof et al. 2010), ecogeographical 
rules (Diniz-Filho et al. 2007, 2009), spatially-structured 
phylogenetic patterns in trait variation (Freckleton and Jetz 
2009, Safi  and Pettorelli 2010) and phylogenetic diversity in 
general (Kuhn et al. 2009, Diniz-Filho et al. 2010, Pillar and 
Duarte 2010). PVR, as well as other phylogenetic compara-
tive methods, can be used to analyze patterns and processes 
that require estimating the magnitude of phylogenetic signal, 
as well as to modeling species ’  trait responses to environmen-
tal drivers independent of the phylogenetic structure. 

 However, we believe that one of the most interesting 
potential applications of PVR is the evaluation of ecogeo-
graphical rules by combining interspecifi c and assemblage 
approaches (Diniz-Filho et al. 2007, 2009, Ramirez et al. 
2008, Terribile et al. 2009, Olalla-T á rraga et al. 2010). 
Rather than using PVR, for example, to evaluate Bergmann ’ s 
rule by correlating species body size with mean tempera-
ture (i.e. a general estimate of temperature within species ’  
ranges, in a typical  ‘ cross-species ’  analysis), the evolution-
ary and ecological components of assemblage patterns can 
be investigated using PVR by partitioning body size vari-
ation into phylogenetic and specifi c components and 
then obtaining mean values for these components within 
assemblages. Partitioning trait variation using PVR allows 
not only studying the spatial variation in mean body size 
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across species assemblages (as in a classical assemblage-based 
approach), but also the mean S-component (PVR residuals). 
For instance, Diniz-Filho et al. (2009) showed that total 
mean body size in Carnivora decreases towards higher lati-
tudes (see also Rodriguez et al. 2008), probably related to 
macroevolutionary events such as higher species turnover in 
these regions. On the other hand, the mean S-component, 
expressing deviations from expected body size due to phylo-
genetic eff ects, shows a clearer Bergmannian gradient, with 
large bodied species (or deviations from phylogenetic expec-
tation) in colder parts of the world, reinforcing adaptive 
explanations linked with climatic variation. 

 However, and, admittedly, the estimation of the 
S-component is a key issue to accurately detect these eco-
geographical patterns. Th us, our goal here is to examine the 
core of the PVR method, by comparing diff erent approaches 
for eigenvector selection using several criteria. We also 
evaluate here the implications of these eigenvector selection 
approaches for detecting patterns (i.e. ecogeographical rules) 
by comparing the S-component derived from diff erent PVR 
models with analogous results from two other methods, i.e. 
the autoregressive model (ARM) (Cheverud et al. 1985) and 
the phylogenetic generalized least-squares (PGLS) (Martins 
and Hansen 1997, Garland and Ives 2000, Rohlf 2001). 
Finally, we used simulations to evaluate the ability of PVR 
to quantify accurately the phylogenetic signal with diff erent 
sets of eigenvectors and under diff erent evolutionary sce-
narios (i.e. assuming traits evolving 1) independently among 
species, 2) under a neutral process and 3) under stabilizing 
selection processes).  

 Methods  

 Data and the basic PVR model 

 We use a global Carnivora database with log-transformed 
body size data for 209 species (see Diniz-Filho et al. 2009 for 
details) to illustrate the application of PVR and to evaluate 
the approaches used to select eigenvectors (see below). We 
used diff erent sets of eigenvectors in an OLS multiple regres-
sion model of the form 

  Y   �   X β    �    e   

 where X contains a set of  k  eigenvectors from a phyloge-
netic distance matrix  D  derived from Bininda-Emonds ’  
et al. (1999, 2007) supertree, obtained using a standard prin-
cipal coordinate analysis (PCORD) (Legendre and Legendre 
1998). Th e vector   β   comprises the partial regression coef-
fi cients, whereas   e   represents the model residuals that can be 
equated with S-component, as in Cheverud ’ s et al. (1985) 
ARM. Th e phylogenetic signal is given by the R 2  of the 
OLS model, and its statistical signifi cance can be tested by 
F-statistics from ANOVA of the regression. However, all 
estimates in PVR depend on which combination of eigen-
vectors are used to defi ne  X  and, thus, the critical issue in 
PVR consists in defi ning an approach to select the eigenvec-
tors to be retained for further analyses. 

 According to recent applications of PVR in studying 
Bergmann ’ s rule (Diniz-Filho et al. 2007, 2009), we also ana-

lyzed geographic patterns in the mean S-component by map-
ping them using assemblages from a total of 4031 cells (1 �  
latitude  �  1 �  longitude) covering the New World (see Diniz-
Filho et al. 2009 for details). Th e idea is that Bergmann ’ s rule 
can be interpreted as a recent non-phylogenetic (referred to 
here as  ‘ adaptive ’ ) response in the mean S-component within 
cells, indicating independent responses in the species found 
in a region, that correlates positively with climate (see also 
Diniz-Filho et al. 2007, 2009, Ramirez et al. 2008, Terribile 
et al. 2009, Olalla-T á rraga et al. 2010). On the other hand, 
patterns in the P-component or total mean body size could 
go in the opposite direction, with large-bodied species being 
found, on average, at lower latitudes (see also Rodriguez 
et al. 2008). Th is geographic pattern might arise due to higher 
extinction rates and taxonomic turnover in the glaciated part 
of the world (Diniz-Filho et al. 2009). Clearly, using an 
approach that does not estimate correctly the phylogenetic 
and specifi c components in data could make it diffi  cult to 
distinguish between adaptive responses and geographic pat-
terns in extinction rates and taxonomic turnover.   

 Eigenvector selection approaches 

 We initially ran diff erent PVR analyses (both in terms of 
calculating the S-components and mapping them), sequen-
tially increasing the number of eigenvectors from  k   �  1 to 
70, following the sequence of their associated eigenvalues. 
Although it is possible to extract 208 eigenvectors from 
the data set of 209 species, the initial set comprising the fi rst 
70 eigenvector explained 99% of the phylogenetic structure 
in  D  (i.e. the percentage of variation explained by the prin-
cipal coordinate analysis applied to the squared phylogenetic 
distance matrix). Th us, this set was used as an initial cut-off  
for the comparative analyses. Beyond analyzing how models 
with increased number of eigenvectors perform according to 
diff erent criteria (R 2 , AIC, residual autocorrelation, type I 
error rate and so on – see below), the sequential addition of 
eigenvectors allow us to test two commonly used approaches 
to select eigenvectors or axes in multivariate analyses (see 
Peres-Neto et al. 2005 for an evaluation in the case of prin-
cipal component analysis): 1) comparison of observed and a 
broken-stick distribution of eigenvalues and; 2) using a pre-
established percentage of the trace of the distance matrix, 
e.g. 95% of the variation in the phylogenetic distances. 

 Th e purpose of PVR is to explain variation in a trait due 
to the structure of the phylogeny and to control for autocor-
relation, thus the approaches described above tend to repre-
sent as best as possible the phylogenetic structure in respect 
to trait variation. However, traits frequently show complex 
patterns of variation among species, not evolving at a con-
stant rate or under the same process along the entire phy-
logeny. Moreover, because there are also measurement errors 
both in the traits and in the branch lengths of the phylogeny, 
the use of all eigenvectors is seldom necessary to account for 
the phylogenetic patterns in trait variation. Th us, it is sensi-
ble to directly search for the eigenvectors (representing parts 
of the phylogenetic relationships) related to the trait(s) under 
study. Here we compare three non-sequential approaches 
under this framework. Th e fi rst consists of using the eigen-
vectors that are signifi cantly correlated (p  �  0.05) with the 
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 In a second simulation scenario, we simulated a trait evolv-
ing under a pure neutral (Brownian motion) model (plus 
random errors, which would go to zero as the number of spe-
cies increases). In this case, one could estimate the coeffi  cient 
of determination estimated by PVR when all trait variation 
can be explained by phylogenetic relationships. Th erefore, 
we implemented a total of 250 evolutionary realizations of 
the Brownian motion process in the PDSIMUL routine of 
PDAP (phenotypic diversity analysis program  –  Garland 
et al. 1993), and the distributions of R 2  and associated 
F-values were evaluated as before. 

 Changing the parameters of the Brownian motion simu-
lation allows another evaluation of how PVR captures phylo-
genetic signal. Th e Brownian motion process can be viewed 
as a particular case of an Ornstein – Uhlenbeck (O – U) pro-
cess, in which rather than evolving under a neutral process, 
a trait is subjected to stabilizing selection (Felsenstein 1988, 
Hansen and Martins 1996, Martins et al. 2002). Th is O–U 
process is expressed as a negative exponential relationship 
between the interspecifi c variance and time since divergence, 
with an alpha parameter that regulates the intensity of selec-
tion. Th erefore, in a third simulation scenario we evaluated 
how increasing the intensity of selection in the model by 
adjusting alpha, ranging from 0 (Brownian motion) to 10 
(strong stabilizing selection), aff ects the R 2  estimates (see 
Diniz-Filho 2001 for details of simulating O – U parameters).   

 Comparison with other methods 

 Finally, we correlated the S-components estimated by the 
PVR models with others methods, to evaluate how the simi-
larity between these related methods is aff ected by PVR ’ s 
eigenvector selection. We initially compared PVR with 
Cheverud ’ s et al. (1985) autoregressive model (ARM), which 
also partitions T into P and S by fi tting the model 

  Y   �   ρ  WY   �    e   

 where  ρ  is the autoregressive coeffi  cient (the slope of   Y  against 
 Wy ),  W  is a weighting matrix derived from the phylogeny 
and   ε   represents the model residuals. Th e term  ρ  WY  esti-
mates the P-component as a linear combination of the trait 
that expresses the expected value of each species as a function 
of the values in all other species weighted by their phyloge-
netic distances. Th e residuals (  e  ) express the S-component 
and, again, the ratio P/T is estimated by the  ρ  2 , or the coeffi  -
cient of determination (R 2 ) of this linear model, which is fi t-
ted using maximum likelihood estimation (Cheverud et al. 
1985). Here we used a modifi ed implementation of ARM by 
Gittleman and Kot (1990), where the  W -matrix was given 
by W ij   �  1/D ij  2 , so that only small residual autocorrelation 
(estimated by Moran ’ s I  �  0.073, p  �  0.035) remains after 
fi tting the model. 

 Finally, because of discussion of the relationship 
between phylogenetic generalized least-squares (PGLS) 
and PVR (Adams and Church 2011, Freckleton et al. 
2011), we also compared S-component from PVR with a 
PGLS transform of log-body size, following Garland and 
Ives (2000, p. 361). Th e idea is to calculate a vector  Z , 
given by 

trait (Diniz-Filho et al. 2009). Th e second uses an automatic 
stepwise procedure (because eigenvectors are orthogonal, 
forward and backward analyses provide identical results). 
Finally, we used an iterative search for the eigenvector that 
reduces the largest amount of autocorrelation in the residu-
als, as previously proposed in the spatial context (Griffi  th 
and Peres-Neto 2006). As new eigenvectors are added to 
the model, residuals are updated and autocorrelation re-
estimated. Th e search stops when residual autocorrelation is 
reduced below an arbitrarily defi ned threshold for Moran ’ s I 
or its statistical signifi cance (here we used Moran ’ s I smaller 
than 0.05 as a stopping rule).   

 Model evaluation and simulations 

 We evaluated the results of each PVR model using diff erent 
criteria. First, we used the coeffi  cients of determination (R 2 ) 
of the models as measures of goodness of fi t. As a second 
criterion, we used the Akaike information criterion (AIC) to 
select the best model in terms of minimum adequate model 
(Diniz-Filho and Nabout 2009), which can be viewed as 
representing a compromise between the magnitude of phy-
logenetic signal captured by the regression and the number 
of eigenvectors used. To measure the amount of phylogenic 
structure of  D  retained by the eigenvectors, we also com-
puted, for each set of eigenvectors, an Euclidean distance 
among species based on the selected eigenvectors, and cor-
related this matrix with the original matrix of phylogenetic 
distances (this is called cophenetic correlation in multivari-
ate analyses  –  Sokal and Rohlf 1962, Legendre and Legendre 
1998). 

 Gittleman and Kot (1990) pointed out that the assump-
tion of independence must always be confi rmed after model 
fi t, because incorporating the phylogenetic matrix into a 
model does not ensure that residuals will be independently 
distributed, which is critical for the correct estimate of the 
S-component. Th erefore, Gittleman and Kot (1990) sug-
gested that Moran ’ s I based correlograms (Legendre and 
Legendre 1998; see also Diniz-Filho 2001 and Pavoine et al. 
2007 for recent interpretations) could be used as a diagnostic 
tool after fi tting Cheverud ’ s et al. (1985) ARM to check the 
validity of this assumption (i.e. phylogenetically independent 
S-component). Th e same reasoning applies to PVR, and thus 
we retained model residuals for evaluation using phyloge-
netic correlograms based on Moran ’ s I coeffi  cients calculated 
for fi ve distance classes, establishing the signifi cance of each 
coeffi  cient using 500 randomizations. 

 We also evaluated the performance of each PVR model in 
estimating the amount of phylogenetic signal (i.e. the PVR ’ s 
coeffi  cient of determination, R 2 ) using simulations under 
three scenarios. Th e fi rst scenario was generated by random-
izing trait values (250 times) along the tips of the phylogeny. 
For each randomization, we estimated the R 2  of a regression 
between the resultant trait vector and the set of eigenvectors. 
By doing so, we derived the null distribution of R 2  expected 
in the absence of phylogenetic signal in the data. We then 
counted how many F-values of the OLS multiple regression 
were signifi cant at the 5% level, which allows calculation 
of the type I error rate of the PVR in fi nding a signifi cant 
phylogenetic signal when it does not exist. 
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possess R 2  values always higher than 0.75, and especially with 
a non-signifi cant Moran ’ s I for S-component (Table 1). 

 It is clear that increasing the number of eigenvectors  k  
results in an increase in the coeffi  cient of determination, 
as pointed out by Rohlf (2001) and expected for any mul-
tiple regression (although adjusted-R 2  may be less sensitive 
to this). However, after adding the fi rst 25–30 eigenvectors, 
the cophenetic correlations are all very high (i.e.  r   �  0.99), 
implying that these eigenvectors tend to summarize effi  -
ciently the main patterns of phylogenetic relationships 
among the species. Also, AIC indicates that the minimum 
adequate model must add sequentially 30–40 eigenvectors 
(the delta AIC between the models with 25 and 30 eigenvec-
tors is relatively large, but not between those models with 
30 and 40 eigenvectors), which is similar to the minimum 
number of eigenvectors needed to remove all autocorrelation 
from the residuals (i.e. about 25 eigenvectors). 

 Th e absence of phylogenetic autocorrelation is critical to 
ensure that species are independent so that S-component 
can be used for further statistical analyses. Note that when 
increasing the number of eigenvectors (e.g.  k   �  40) the 
residual autocorrelation becomes increasingly negative and 
statistically signifi cant. Although not intuitive, this result 
indicates that the data provide more information (i.e. there 
are more degrees of freedom) than would be obtained from 
uncorrelated residuals, so this can be interpreted as an over-
correction or overfi tting problem (Table 1). 

 Th e spatial patterns in mean body size and mean 
S-component possess very low correlations with environ-
mental predictors (Diniz-Filho et al. 2009). However, the 
maps of the S-components (Fig. 1) clearly show the impacts 
of an ineffi  cient partition of phylogenetic and specifi c com-
ponents resulting from selecting too few eigenvectors (e.g. 
Fig. 1B). It is possible to see that mean body size does not 
show strong geographical patterns, although there is a ten-
dency for species to be, on average, larger in the tropics than 

  Z   �   DY  

 where  D  comes from a singular value decomposition of the 
form 

  DCD  T   �    I  

 and  C  is the phylogenetic covariance among species ( I  is an 
identity matrix). So, the vector  Z  can be interpreted as the 
values of the trait that would be expected if species were phy-
logenetically independent and hence can be used in any other 
statistical analysis (see also Butler et al. 2000). Th us, this 
 Z -vector can be roughly comparable to PVR ’ s S-component. 
Because body size can evolve under more complex models 
than simple Brownian motion, we fi tted the PGLS model 
by searching for the  λ  that maximizes the likelihood of the 
model, and compared it with a null model of absence of sig-
nal and with a Brownian model ( λ   �  1) (Freckleton et al. 
2002).    

 Results  

 Sequential approach 

 Th e fi rst 25 eigenvalues of the PCoA accounted for 95% of 
the variation among the distances contained in  D . Only the 
fi rst six eigenvectors would be selected for PVR according to 
the broken-stick approach. However, residuals resulting from 
regressing body size against these fi rst six eigenvectors were 
strongly autocorrelated (I  �  0.525, p  �  0.001), and the 
model had a low coeffi  cient of determination (R 2   �  0.455). 
On the other hand, when selecting the 25 eigenvectors that 
explain 95% of the variance, all criteria suggest that PVR 
model falls within the interval of  k  for which all estimates 
start to be stable and produce similar results. Th ese models 

  Table 1. Coeffi cients of determination (R 2 ) and F-statistics evaluating the signifi cance of each phylogenetic eigenvector regression (PVR) 
between Carnivora body size (log-transformed) and variable numbers of eigenvectors ( k ) under sequential and non-sequential approaches 
for eigenvector selection. The columns also contain the Moran ’ s I of the model residuals estimated for the fi rst distance class (IRES ,  and their 
associated p-values), the correlation of the S-components estimated by PVR with the S-component from autoregressive model (r PVR,ARM ) and 
with the Z-transform from PGLS (r PVR,PGLS ), correlation between the original phylogenetic matrix and the Euclidean matrix calculated with 
base on the selected eigenvectors (r coph ) and Akaike information criterion (AIC) of the phylogenetic regression models. Non-sequential 
 eigenvector selection approaches include eigenvectors signifi cantly related with body size at p  �  0.05 (ESRBS), eigenvectors selected by a 
standard stepwise algorithm (STEP), and eigenvectors selected to minimize the phylogenetic autocorrelation of the residuals (MINI).  

Approaches  k R 2 F IRES p r PVR,ARM r PVR,PGLS r coph AIC

Sequential 1 0.02 3.1 0.701  � 0.001 0.73 0.799 0.86 408.50
5 0.40 26.8 0.434  � 0.001 0.80 0.833 0.98 314.90

10 0.57 26.0 0.405  � 0.001 0.77 0.826 0.99 255.79
15 0.62 21.8 0.122  � 0.001 0.79 0.839 0.99 238.71
20 0.69 20.6 0.080  � 0.001 0.81 0.835 0.99 212.44
25 0.76 23.5 �0.036 0.487 0.75 0.826 0.99 206.28
30 0.78 20.6 �0.070 0.256 0.73 0.82 1.00 168.78
40 0.81 17.5 �0.108 0.006 0.70 0.797 1.00 168.29
50 0.82 14.5 �0.116 0.002 0.69 0.776 1.00 184.86
60 0.84 13.0 �0.126  � 0.001 0.65 0.765 1.00 199.05
70 0.86 11.6 �0.135  � 0.001 0.64 0.753 1.00 223.20

Non-sequential
ESRBS 27 0.82 29.9 �0.096 0.014 0.70 0.786 0.99 118.56
STEP 36 0.84 24.3 �0.122 0.001 0.69 0.782 1.00 126.43
MINI 14 0.70 31.6 0.046 0.172 0.77 0.818 0.96 191.00
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Figure 1.     Spatial variation of mean body size of Carnivora assemblages in the New World (A) and examples of mean S-components of PVR 
estimated using diff erent sequential and non-sequential approaches, including the fi rst 5 eigenvectors (B), the 25 fi rst eigenvectors (C), and 
the eigenvectors that minimize residuals Moran ’ s I (D). For comparison, (E) contains the mean S-component derived from autoregressive 
method and (F) contains the mean  Z -vector from PGLS.  

in the North America. When only a few eigenvectors are 
used, there is also no evidence of Bergmann ’ s rule, because 
the S-component is not phylogenetically independent and, 
thus, patterns are still similar to those found for mean total 

body size. However, when averaging S-components, mainly 
when  k   	  20, this result tends to invert, and a Bergmann-
like pattern is clearer, mainly in northeastern North America 
(Fig. 1C). 
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 Also, in this range (i.e.  k   	  20), PVR results are similar 
to those obtained using ARM and PGLS, as expected by 
the correlation among the S-components with results from 
the two methods ( Z -vector in the case of PGLS; Fig. 1F). 
Th e best PGLS model for body size was obtained using a 
 λ  of 0.936. As, as expected, the PGLS  Z -vector is not autocor-
related (Moran ’ s I  �  �0.055; p  �  0.108). In general, corre-
lations between PVR ’ s S-component, estimated with diff erent 
sets of eigenvectors, and the PGLS ’ s  Z -vector were around 
0.8, slightly higher than with ARM ’ s S-component (Table 1). 
Th e correlation between PGLS  Z -vector and S-component 
from ARM was even higher, and equal to 0.905. All of these 
correlations are even higher when an assemblage approach is 
used, after averaging the phylogenetic-free values estimated 
by both methods within cells (for example, with  k   �  25, the 
correlation between these values was equal to 0.826 across 
species, but increased to 0.882 across space).   

 Non-sequential approaches 

 All three non-sequential approaches provided good results 
according to the model evaluation criteria previously dis-
cussed for sequential approaches (Table 1). However, the R 2  
values tend to be slightly higher when using a stepwise multi-
ple regression than when utilizing the sequential approaches 
(with similar  k ). 

 It is important to note that using the 27 eigenvectors 
that are signifi cantly correlated with body size produced the 
smallest AIC value, and therefore the minimum adequate 
model, among all compared models (Table 1). To achieve a 
comparable R 2  ( ≈  0.8) using the sequential criterion it would 
be necessary to add about 50 eigenvectors. Despite being 
similar the minimum adequate model, this PVR model with 
50 eigenvectors possess autocorrelated residuals, but with 
large negative Moran ’ s I value in the fi rst distance class (as 
expected for over-fi tted models). Th is also occurs when using 
a stepwise multiple regression, which produced the model 
with the second smallest AIC value, but also with negative 
and signifi cant autocorrelation in the residuals. 

 Th e criterion that minimizes Moran ’ s I in the residuals 
yields a model with only 14 eigenvectors, and with small 
autocorrelation. Th e R 2  is not as high as in the other non-se-
quential models (0.70), but still much higher than expected 
for a sequential model with similar  k  (i.e. under sequential 
approach approximately 20 eigenvectors would be needed to 
achieve a similar R 2 ; Table 1). Mean S-components were also 
stable and similar to geographic patterns from other PVR 
models using the sequential approach.   

 Simulations and evolutionary models 

 Even under a null model of no phylogenetic signal in the 
data, there is a clear increase in the median value of R 2  as the 
number of phylogenetic eigenvectors increases (as expected 
in any multiple regression). Th e same pattern emerges when 
the non-sequential approaches were used. However, in both 
cases, type I error rates after simulating random values across 
the phylogeny are rather close to the expected value of 5% and 
have no relationship with  k  (Table 2). Th e same stability after  

  Table 2 .  Type I error rates, median coeffi cients of determination (R 2 ) 
and critical values of R 2  (at confi dence level of 95%) obtained by 
phylogenetic eigenvector regressions (PVR) after randomly reshuf-
fl ing Carnivora body size (log-transformed) along the tips of the phy-
logeny. Different approaches for selecting eigenvectors were used 
(Table 1). Also shown are the median coeffi cients of determination 
(R 2 ) obtained under a Brownian motion process.  

R 2 

Approaches  k Type I error Null 95% Brownian

Sequential 1 0.040 0.002 0.018 0.184
5 0.040 0.022 0.049 0.541

10 0.050 0.043 0.082 0.652
15 0.030 0.070 0.094 0.750
20 0.050 0.090 0.147 0.754
25 0.060 0.119 0.179 0.778
30 0.030 0.140 0.200 0.811
40 0.050 0.200 0.239 0.845
50 0.040 0.259 0.270 0.856
60 0.035 0.300 0.295 0.866
70 0.040 0.346 0.312 0.870

Non-sequential
ESRBS 27 0.055 0.127 0.190 0.769
STEP 36 0.040 0.172 0.243 0.816
MINI 14 0.060 0.065 0.117 0.635

k   	  20 was observed for the R 2  according to the Brownian 
model of trait evolution, which increases slowly and is 
around 0.81 when 30 eigenvectors are used in the multiple 
regression model. Th ere is also a more or less constant ratio 
between observed and expected (under a Brownian motion 
model) values of R 2  of around 95%. 

 Increasing the intensity of stabilizing selection in the O – U 
model by adjusting the alpha-parameter reduces monotoni-
cally the R 2  estimated by PVR independently of the criterion 
used to select eigenvectors (Fig. 2). Based on those criteria 
for which no residual autocorrelation appears, the mean R 2  
dropped from 0.73 under a pure Brownian motion process 
(when alpha  �  0), to 0.35 when alpha is equal to 10.    

 Discussion  

 The issue of eigenvector selection 

 Because PVR was proposed as an alternative to Cheverud ’ s 
et al. (1985) autoregressive model to partition trait varia-
tion into P- and S-components based on an eigen-analysis 
of phylogenetic distances, the most important issue in PVR 
is how to determine which eigenvectors will be used in the 
analyses. However, this issue has been rarely discussed in 
the literature, both for spatial and phylogenetic eigenvector 
methods. 

 Th e primary counterintuitive aspect in the phylogenetic 
context is that, although all eigenvectors are indeed neces-
sary to represent the entire phylogeny (as correctly pointed 
out by Rohlf 2001), not all of them are necessary to remove 
phylogenetic autocorrelation in a particular trait. Th e dis-
tribution of eigenvalues and the ability of the fi rst eigen-
vectors to describe the relationships among species (i.e. to 
describe what can be called  ‘ the geometry of relationships ’ ) 
will depend on phylogeny properties, such as balance and 
stemminess. However, the phylogenetic signal will emerge 
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Figure 2.     Variation in the coeffi  cient of determination obtained by a phylogenetic eigenvector regression with increasing intensity of selec-
tion (as regulated by the alpha parameter) and according to diff erent approaches for selecting phylogenetic eigenvectors. Inserts are the 
numbers of eigenvectors.  

in this phylogeny as a combination of phylogeny shape and 
evolutionary dynamics of traits (i.e. the evolutionary model), 
so we may think of at least three reasons why not all eigen-
vectors are necessary in a PVR analysis: 1) only parts of the 
phylogeny that are relevant to trait evolution need to be 
incorporated into the OLS model, especially if traits evolve 
under complex patterns along the phylogeny, and 2) even if 
the trait varies continuously with phylogeny from the root 
to the tips under simple models such as Brownian motion 
or O – U process, a few eigenvectors can capture most of this 
interspecifi c trait variation if the geometry of the relation-
ships creates very strong structures at the base of the phy-
logeny (e.g. very distinct clades that diverged for the trait). 
Moreover, 3) measurement errors in both the data and the 
phylogenies exist, so it is expected that some eigenvectors 
 –  especially those representing short branch lengths, which 
are more diffi  cult to estimate and are more prone to error 
 –  will not be useful, also because they will account for small 
accumulated variation in trait. 

 Moreover, regarding Rohlf  ’ s (2001; see also Freckleton 
et al. 2011) criticisms, it is important to emphasize that 
one can consider PVR adequate to model trait variation 
only when the values in the S-component are independent 
among species. Th is can be tested by phylogenetic correlo-
grams, as originally suggested by Gittleman and Kot (1990) 
for the ARM. PVR will incorrectly estimate the strength of 
the phylogenetic signal when, for example, few eigenvectors 
representing the base of the phylogeny are used to describe 
the patterns and few species diff er greatly from this expecta-
tion due to very recent adaptations. In this case the R 2  will 
be an underestimate because eigenvectors describing the part 
of the phylogeny when recent shifts in species ’  trait occurred 
will be missing (Monteiro and Abe 1999). Th e same will hap-
pen under phylogenetic non-stationarity, in which processes 

change through the phylogeny (Diniz-Filho et al. 2010) and 
create more complex and unexpected (by the phylogeny) 
interspecifi c variation. However, all comparative methods 
are subject to this problem and, in PVR and other partition-
ing methods, the problem can be easily detected by a careful 
analysis of model residuals. 

 Our analyses reveal that both sequential and non-sequential 
approaches may be useful to select eigenvectors, and results 
tend to be robust (at least in terms of the magnitude of phy-
logenetic signal and estimated S-components; Table 1) for 
some ranges of  k  values, especially considering selection pro-
cedures that yield models with residuals with no autocor-
relation. As a consequence, geographical analyses of mean 
S-component, which have recently used to evaluate multiple 
processes underlying Bergmann ’ s rule, are also stable after a 
critical number of eigenvectors is selected. Correlations with 
ARM and PGLS are also relative high and show qualitatively 
similar patterns, being all very diff erent from those ignoring 
phylogeny and mapping mean body size. Th erefore, recent 
criticisms by Adams and Church (2011) and Freckleton 
et al. (2011) should be viewed with caution, suggesting that 
particular cases and troubles in the selection of eigenvectors 
used in the models may lead to a misleading comparison 
between methods. 

 Even so, although it is advantageous for practical purposes 
that results are not very dependent on which eigenvectors are 
selected, it is important to provide guidelines for eigenvec-
tor selection. Th ese guidelines will depend on the statistical 
comparison of models shown in Table 1, and on the defi ni-
tion of the most important criteria for PVR model. 

 In a theoretical (and statistical) sense, the fi rst and most 
important critical diagnosis for most applications (i.e. corre-
lated evolution and phylogenetic signal) is the evaluation of 
residual autocorrelation, and this should be done whatever 
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 λ   �  0.936 is close from the ratios obtained when  k  is around 
20 (i.e. equal to 0.976). 

 One of the diffi  culties in testing the robustness of meth-
ods used to estimate phylogenetic signal consists in simulat-
ing trait evolution with a predefi ned value of phylogenetic 
signal, which in turn must be measured using a given crite-
rion. Diniz-Filho (2001) showed that there is a monotonic 
relationship between increasing strength of stabilizing selec-
tion in O – U models (which decrease the phylogenetic sig-
nal) and Moran ’ s I, and the analyses performed here show 
that the same relationship between strength of O – U and 
signal can be detected using PVR ’ s R 2  (Fig. 2). Th is indicates 
that PVR captures well the magnitude of phylogenetic signal 
in data, because increasing the adaptive strength in simula-
tion models ( α ; Martins et al. 2002), which causes in turn a 
loss of  ‘ deep-time ’  historical signal, is well expressed in PVR 
by a reduction of R 2 . Of course, it is possible to infer that dif-
ferent sets of eigenvectors would be necessary to show how 
 ‘ short-time ’  historical signal (generated by higher alphas in 
an O – U process) aff ect trait variation. Th ese processes would 
be better modeled by eigenvectors associated with low eigen-
values, which are usually not used in the sequential selection 
procedures (and would be even among those excluded from 
our initial set of 99% of the trace). However, if this  ‘ short-
time ’  signal is present, the fi rst eigenvectors should not be 
selected for modeling phylogenetic eff ects because any  ‘ deep 
time ’  historical signal was deleted by selective process under 
O – U dynamics, thus dropping the fi nal PVR ’ s R 2  anyway. 
Further investigations about how eigenvector selection cap-
tures diff erent and more complex evolutionary models may 
be then necessary. 

 Using randomly reshuffl  ed data, we have shown that 
PVR gives the correct type I error rates, which also tend to be 
independent of eigenvector selection. Th us, in the analysis of 
empirical data, a non-signifi cant relationship between a trait 
and a set of eigenvectors (as tested by the F-statistics) would 
be suffi  cient to indicate the absence of phylogenetic signal in 
those data. In addition, authors should provide the range of 
R 2  values obtained after randomly shuffl  ing values over the 
phylogeny. Th e observed R 2  resulting from regressing a trait 
against the selected set of eigenvectors can then be compared 
to that range of values obtained under the null simulations. 
If the observed value is clearly within this range, then any 
further interpretation on the level of phylogenetic signal and 
on the P- and S-components would be misleading. 

 Our analyses confi rm that PVR is a useful technique 
for comparative analysis, despite criticisms and the lack of 
an explicit evolutionary model (Rohlf 2001, Adams and 
Church 2011, Freckleton et al. 2011). However, even if PVR 
was found to be robust with respect to selection approaches, 
our analysis suggests that a poor choice of eigenvectors, par-
ticularly when only a few of them are used to represent the 
phylogeny, can have serious impacts on the ecological inter-
pretation of the variance partitioning. We claim that opti-
mization approaches that search for the minimum Moran ’ s 
I provide the best compromise between the amount of phy-
logenetic signal, independence of S-component values and 
number of eigenvectors used. Moreover, our results can also 
shed some light on how to use other eigenfunction methods 
that have been used to take phylogenetic, spatial and temporal 
autocorrelation into account.         

approach is adopted. Th e sequential approach of successively 
adding eigenvectors until the Moran ’ s I of residuals becomes 
non-signifi cant or reach values below a defi ned critical level 
(Diniz-Filho and T ô rres 2002) is an initial option, and rela-
tively easy to compute, but it is much less eff ective than other 
more computationally intense approaches, such as directly 
minimizing residual Moran ’ s I. Indeed, the sequential method 
required at least 20 eigenvectors to reduce autocorrelation 
below 0.05, whereas the iterative search method required 
only fourteen eigenvectors to achieve similar results. 

 Th e AIC criterion also favors the approach of including 
eigenvectors signifi cantly related with body size and the step-
wise approach, when compared to sequential approaches. 
However, using eigenvectors that are correlated with  Y  and 
stepwise selection tend to produce over-fi tted models (espe-
cially stepwise). Th us, AIC tends to favor models with more 
eigenvectors than necessary to take autocorrelation into 
account, which can be problematic to perform further analy-
ses with S-component. Th e iterative search for low residual 
autocorrelation approach represents a good compromise 
between model explanation and ensuring independence 
among species.   

 The phylogenetic signal 

 When the S-component is independent among species, by 
defi nition the ratio in the variances of P/T expresses the phy-
logenetic signal in data. Th us, the R 2  of PVR estimates the 
amount of phylogenetic signal in data, or, more explicitly, 
the proportion of variation in a trait that is explained by 
the phylogenetic distances (represented by a few eigenvec-
tors, which implies in some loss of information) among 
species. However, as pointed out by Rohlf (2001), although 
the R 2  expresses the part of the trait variation described 
by the selected phylogenetic eigenvectors, it is clear that 
this interpretation may be also related to how eigenvectors 
describe the geometry of the relationships as well. Th us, the 
amount of signal must be interpreted considering how well 
the phylogeny is represented by a relatively small number of 
eigenvectors, which in turn depends on tree topology and 
stemminess. 

 Other methods have been proposed to estimate the phy-
logenetic signal, including ARM (Cheverud et al. 1985, 
Gittleman and Kot 1990), Moran ’ s I coeffi  cients (Diniz-
Filho 2001), Blomberg ’ s et al. (2003)  K -statistics, and Pagel ’ s 
(1999)  λ , but a comparative evaluation of these estimates 
has yet to be performed. As a reference, the R 2  estimated 
by the ARM used here to compare the S-components was 
0.585, not very diff erent from the value obtained by PVR 
using the optimization approach (R 2   �  0.7). Other methods 
to estimate phylogenetic signal are also popular in ecologi-
cal analyses, especially Pagel ’ s (1999)  λ  (see also Freckleton 
et al. 2002), which was used here to fi t PGLS and was equal 
to 0.936, suggesting a strong phylogenetic signal in body 
size. But this coeffi  cient actually measures the departure 
from a Brownian motion model, not being strictly compa-
rable to the R 2  of a PVR or ARM (Housworth et al. 2004). 
Although this has yet to be demonstrated, the  λ  could be 
comparable to the ratio between the observed PVR ’ s R 2  and 
the one expected under Brownian motion. If this is the case, 
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