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Self-disturbance as a Source of Spatiotemporal Heterogeneity:
the Case of the Tallgrass Prairie
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Tallgrass prairies are characterized by high levels of litter production, which has a profound
effect on live biomass. Litter introduces a delayed inhibition of biomass growth, generating
nonlinear dynamics and chaos. In this paper, we study a model of biomass-litter interaction,
and focus on the litter persistence rate. The observed dynamics depends largely on this rate of
year-to-year persistence. Different scenarios are explored and discussed. A spatially extended
counterpart of such a model is later on introduced to account for the effects of space. Temporal
chaos introduces spatial heterogeneity in terms of gaps where the current year biomass is
almost zero. Such gaps can be colonized by fugitive species. The inhibitory effect of litter on
biomass is thus an important source of intrinsic, small-scale heterogeneities that may promote
diversity. On the other hand, the huge amounts of litter produced by the competitive
dominants in tallgrass prairies enhance the probability of fires. Fires benefit, rather than
depress, the superior competitive species. This fact explains why the intermediate disturbance
hypothesis (IDH) stating that the highest diversity levels should be observed at intermediate
disturbance frequencies, does not work in these communities. We define self-disturbances as
small-scale disturbances affecting the growth and survival of the individuals that have gener-
ated them (e.g. due to the effects of the litter mass they produce). In the absence of other
disturbances, self-disturbances can induce high heterogeneity and diversity levels in tallgrass
prairies. We discuss the general implications of self-generated disturbances for landscape
heterogeneity and diversity of communities in which the main external perturbations benefit
the dominant species.
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1. Introduction

How high levels of diversity are supported in
nature is one of the most intriguing questions in
evolutionary ecology. Spatial heterogeneity has
frequently been invoked as a major factor in
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controlling species diversity (e.g. Whittaker
& Levin, 1977; Picket & White, 1985; Yodzis,
1986; Collins, 1992). In general, environments in
which spatial heterogeneity is higher are expected
to accommodate more species because they pro-
vide a greater variety of microhabitats, micro-
climates, resources, refuge from predators, etc.
Disturbances are a source of spatial heterogen-
eity for many communities (e.g. Connell, 1978;
Pickett & White, 1985; Willig & Walker, 1999).
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A disturbance is any relatively discrete event in
time that disrupts ecosystem, community, or
population structure and changes resources, sub-
strate availability, or the physical environment
(Pickett & White, 1985). Disturbances open up
spaces that can be colonized by other individuals
and species. For example, for the case of a plant
community this definition would include both
externally generated disturbances (e.g. fire,
storms, droughts, changes in salinity, grazing,
etc.), and intrinsically generated disturbances (e.g.
the fall of a tree that has died due to ageing).
Within this later category, we also include what
we call self-disturbance: small-scale perturba-
tions affecting the growth and persistence of the
individuals that have produced them (e.g. litter
depression of subsequent biomass growth). Both
extrinsic and intrinsic disturbances can have dif-
ferent consequences for community diversity
(Pickett & White, 1985).

In this paper, we develop a hypothesis to ex-
plain the role of self-disturbances in promoting
spatial heterogeneity. Since spatial heterogeneity
is related to diversity, we extrapolate our dis-
cussion to diversity-related issues. We focus on
tallgrass prairies as a specific example, and we
develop a mechanistic model to understand some
peculiarities of the dynamics of such prairies. In
particular, we want to explain why tallgrass
prairies do not obey the intermediate disturbance
hypothesis (IDH) (Collins, 1992; Collins et al.,
1995) stating that within patch heterogeneity
(and the highest diversity levels) is supported at
intermediate levels of frequency and intensity of
perturbations (Connell, 1978).

The process of litter production and accumula-
tion in tallgrass prairies can potentially explain
why tallgrass prairies do not behave according
to the IDH. Tallgrass prairies are characterized
by extremely high levels of litter production
by the dominant grasses, and this is related to
the frequent fires that affect these ecosystems
(e.g. Knapp & Seastedt, 1986). Fire does not
damage the dominant grasses but can kill their
competitors. On the other hand, there exists
evidence suggesting that, when litter accumulates
in the absence of fires, litter may severely impair
the growth of the dominant grasses (Hulbert,
1969; Knapp, 1985; Knapp & Gilliam, 1985;
Knapp & Seastedt, 1986) but not that of other

herbaceous and woody species (Bragg & Hulbert,
1976; Zimmerman & Kucera, 1977; Knapp, 1984;
Towne & Owensby, 1984; Abrams et al., 1986;
Knapp & Seastedt, 1986). This suggests that
accumulated litter can promote spatial hetero-
geneity (and diversity) in a similar way as that
proposed for the IDH for extrinsic disturbances,
i.e. by creating spaces within the community that
are suitable for the colonization of less-competi-
tive species. Nevertheless, the negative effects of
litter on the species that generate it fall outside
the range of situations accounted for by the IDH,
as this hypothesis does not deal with self-distur-
bances. Here we present an alternative hypothe-
sis to the IDH, the self-disturbance hypothesis
(SDH) which is applicable to communities in
which external perturbations benefit rather than
depress the superior competitive species. In these
situations, the highest diversity levels can be ob-
served in the absence of external perturbations
due to the role of such intrinsic, self-disturbances
in generating heterogeneity and diversity. Thus,
the SDH is an elaboration on two well-known
observations. The first one is the observation that
fire-dependent plant communities burn more
readily than non-fire-dependent communities
due to the accumulation of litter. The second
observation is that these large amounts of litter
may impair the growth of the dominant species
generating spatial heterogeneity.

In a different context, the inhibitory effect of
accumulated litter on biomass production has
been proved to be the origin of oscillations and
chaos in the dynamics of perennial grasses
(Tilman & Wedin, 1991). In this important con-
tribution, Tilman & Wedin (1991) combined ex-
periments with analytical models to provide the
first test of chaotic dynamics in perennial plants.
Litter creates a temporal delay in biomass
growth. This inhibition of growth can lead to
nonlinear dynamics in productive habitats. An
important issue that has not been explored is the
implication of the inhibitory effect of litter on
growth when space is taken into account. As
Tilman & Wedin (1991) already suggested, litter-
induced inhibition of biomass production is a
local process, so chaos can be also a local pheno-
menon not observed at larger spatial scales.

This paper is organized as follows. We start by
introducing an extension of the Tilman & Wedin
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(1991) model for the dynamics of a perennial
grass. We specifically study the effects of litter as
a source of heterogeneity both in time and space.
We first explore the non-spatial model to better
determine the specific influence of litter on bi-
omass dynamics. Specifically, we analyse how the
temporal variability of biomass is affected by
different values of litter persistence in various
scenarios in which litter persistence is either inde-
pendent or dependent on litter amount. In a sub-
sequent section we study the spatial extension of
this model. Our goals are two-fold: to analyse the
relationship between biomass variability and
spatial scales, and to investigate the emergence of
spatial heterogeneity due to the litter inhibition
of biomass growth. This provides a potential
mechanism for the high heterogeneity and diver-
sity observed in undisturbed prairies. From
a more general perspective, our work also high-
lights the potential importance of self-generated
disturbances for diversity in communities in
which the dominant species benefit from external
perturbations.

2. A Model for a Perennial Grass

Our goal in this section is to understand how
litter inhibits biomass growth under different
situations. We want to focus on litter persistence
rate and on the relationship between such a rate
and litter amount. Only after understanding the
inhibitory effect of litter can we extend the model
into a spatial dimension to ask how this inhibi-
tion can lead to spatial heterogeneity. Here we
describe a slightly modified version of the Tilman
& Wedin (1991) model for the dynamics of
a dominant perennial grass,

e(athr)
B, 1 ZCNma (1a)
(a — bL,)
Lt+1 = pL, + CkNm . (lb)

where B, and L, are the living and litter biomass
at year t (both measured in gm?). N is the total
soil nitrogen (mg N per kg soil). The quantity k is
the rate of conversion from biomass to litter and
p is the litter persistence, the fraction of litter

persisting from one year to the next (p =1 —d,
d being the decomposition rate). Quantities a,
b and c are positive constants.

Model (1) describes a system in which biomass
attains its N-determined equilibrium (¢N) in
a single year. The effect of litter is to reduce such
a maximum value (Tilman & Wedin, 1991). Here
we have written a simplified expression for the
effect of litter decay (or persistence). We have just
assumed a linear effect, i.e. litter persistence (p) is
a constant independent of the amount of litter.
Later on, we will explore more complicated
scenarios. Tilman & Wedin (1991) explored the
model for different N-values, showing that a well-
defined route to chaos through a period-doubling
scenario emerges. How do their results change for
different litter decay rates?

In Fig. 1 we show a set of bifurcation diagrams.
For a given nitrogen value we iterate model (1).
After discarding transients, we plot biomass for
the next iteration values. Figures 1(a)-(c) corres-
pond to different persistence (p) values. As can be
noted, in Fig. 1(b), corresponding to p = 0.5,
steady states, cycles and chaos are observed as
the total nitrogen is increased. This diagram is
qualitatively similar to the one plotted in Tilman
& Wedin (1991). However, both for high and low
persistence values, chaos disappears and the sys-
tem is more stable [see Fig. 1(a) and (c)]. This
result is summarized in Fig. 2. For each persist-
ence value, we plot the relative range of nitrogen
values giving chaos in the corresponding bifurca-
tion diagrams. That is, the amplitude of the N-
interval producing chaos divided by the total
range on total soil nitrogen (1600). As can be
seen, there is a peak around p = 0.5. For this
value, approximately 40% of the parameter space
(from N =0 to 1600) shows chaotic solutions.
The fraction of the chaotic domain decreases as
we either increase or decrease litter persistence.
This can be interpreted as follows. For very low
litter persistence values, litter almost disappears
from one year to the next, and so does not exert
an inhibitory effect on the next year’s biomass
growth. Without this inhibitory, delayed effect
both cycles and chaos disappear and the dynam-
ics are stable. A minimum persistence value is
needed in order for the litter to induce such
a nonlinear regulatory effect. However, if litter
persistence is very high, the inhibitory effect on
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FI1G. 1. Bifurcation diagrams for model (1). For a specific
nitrogen value (mg N per kg soil), the model is iterated for
2000 time steps. After the first 1800 iterations are discarded
to avoid transient behavior, the annual biomass values are
plotted for the subsequent 200 iterations (years). Parameters
are a =5, b=0.1, c =0.5, k=04 and litter persistence is
p = 0.2(a), 0.5(b) and 0.7(c), respectively. By comparing the
three bifurcation diagrams, a period-doubling route to
chaos is observed as nitrogen is increased. However, chaos
only appears for intermediate values of persistence. For both
low and high values of persistence, chaos is absent.

biomass is too high and too long, and litter keeps
biomass under low numbers.

Another way of presenting these results is
by a bifurcation diagram in which persistence
is changing for a given nitrogen value. This
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FIG. 2. The fraction of nitrogen values generating deter-
ministic chaos in model (1) is plotted as a function of litter
persistence (p). For each persistence value, a bifurcation
diagram is generated by increasing total soil nitrogen from
0 to 1.600 mg N kg ! soil. Three examples are plotted in the
previous figure. From such bifurcation diagrams we then
calculate the relative fraction of nitrogen values generating
chaotic dynamics. This relative domain of chaotic solutions
is plotted vs. p. Other parameters are as in the previous
figure. From these parameter values, chaos is only observed
for persistence values comprised between 0.2 and 0.65. This
persistence values generate the delayed inhibition effect of
litter on biomass necessary to observe chaotic oscillations.

diagram is plotted in Fig. 3. An interesting pat-
tern emerges. As p increases, there are a number
of bifurcations from stationary to periodic and to
chaotic dynamics. Then, suddenly there is a se-
quence of period-doubling reversals (e.g. Stone,
1993) until for high p-values the dynamics is
again stationary. Both extremes are qualitatively
similar in that the dynamics attain a steady state.
However, the biomass is much higher at low
p-values than for high p-values.

The amount of litter persistence is not likely to
be constant but depends on the amount of litter.
For example, the amount of litter is known to
affect microenvironmental characteristics (e.g.
temperature, humidity, aeration) which in turn
may affect litter decomposition (see Facelli
& Picket, 1991 and references therein). Hence, it
can be adduced that the rate of litter persistence
(or its inverse, i.e. litter decay) is not constant but
depends on the amount of litter. How sensitive
are the previous results to this assumption? The
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FIG. 3. Period-halving bifurcations (period-doubling re-
versals). In this bifurcation diagram, the annual biomass is
plotted as a function of litter persistence. As usual, the first
1800 iterations are discarded to avoid transient behavior,
and the posterior 200 iterations are plotted for each value of
litter persistence. Parameters are a = 0.5, b = 0.1, ¢ = 0.5,
N = 1,200, k = 0.4. The period-doubling route to chaos is
reversed for higher persistence values.

average lifetime of litter in tallgrass prairies be-
fore it is decomposed is about 3—4 years (Kucera
et al., 1967). However, it is not known whether
the rate of litter decomposition varies with litter
amount. Hence, we explored two scenarios:
(i) litter persistence decreases with litter amount,
and (ii) litter persistence increases with litter
amount. Here we use simple relationships be-
tween litter amount and persistence. We do not
intend these relationships to be realistic. We sim-
ply want to show the dependence of these two
variables for different scenarios and the robust-
ness of the results. Similar functions have been
used with similar qualitative results, and overall
the analysis show us the sensitivity of the model
to changes in persistence.

Figure 4 is the equivalent of Fig. 1 for case (i).
A linear relationship (p = 1 — bL) is assumed and
three different slopes are illustrated. For each
p-L relationship, we plot a bifurcation diagram
by increasing the amount of total soil nitrogen.
As observed, only periodic and stationary states
are observed. Chaos has disappeared. The same
qualitative result is observed when p declines
with L is a nonlinear manner (data not shown).
On the other hand, when litter persistence in-
creases with the amount of litter (p = bL), chaos
is again observed (see Fig. 5). An interesting phe-
nomenon is noted in Fig. 5(a) and to a lower
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F1G. 4. Similar bifurcation diagrams as for Fig. 1. In this
case, however, litter persistence is not a fixed rate but it
changes linearly with litter amount. In this scenario, a nega-
tive relationship is assumed, i.e. persistence decreases with
litter amount. Three particular relationships are shown in
the inset. For each one of those, a bifurcation diagram
(biomass vs. nitrogen) is plotted. Chaos is never observed.
Note than in (b), a threshold in nitrogen exists at which
biomass shows an abrupt transition. Parameters are as in
Fig. 1 except for litter persistence, p = 1 — bL,, where L, is
the annual amount of litter and b = 0.0055 (a), 0.0033 (b),
and 0.0016 (c).

extent in Fig. 5(b). Once a critical N-value has
been reached, biomass collapses to a very low
value. This can be understood in the following
way. In the chaotic domain, biomass, and hence
litter increase. Since litter persistence increases
with litter amount, there is even more litter in the
next year. Litter persistence tends to one and so
biomass is kept reduced at very low numbers.
Litter also decreases, but not as fast as biomass
does. These qualitative results remain unchanged
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FIG. 5. Same as in Fig. 4, but now the relationship be-
tween litter persistence and litter amount is positive. Same
parameters as before. The three examples (shown in the
inset) correspond to p = bL,, where L, is the annual amount
of litter and b = 0.0055 (a), 0.0033 (b), and 0.0016 (c). In
contrast to the previous figure, chaos is observed for all three
situations. In (a) and (b), a threshold in total soil nitrogen
can be observed beyond which biomass almost disappears
once litter amount is high enough for the persistence rate to
be 1. Then, litter inhibition on biomass is very severe.

when the relationship between persistence and
litter is made nonlinear (data not shown).

3. A Spatially Extended Counterpart

We turn now to the questions of how biomass
variability (induced by the litter inhibitory effect
studied in the previous section) depends on the
spatial scale, and how this inhibitory effect can

create spatial heterogeneity. We can explore the
effects of space in the previous model by using the
coupled map lattice (CML) formalism. A CML is
a dynamical system with discrete space, discrete
time and continuous state (Kaneko, 1992). CMLs
have been recently used in ecology as a way to
study spatiotemporal dynamics (Solé et al., 1992;
Bascompte & Solé, 1995, 1998).
The new model can be written as follows:

e(a — bL,(r)
B, 1(r) =cN 1 + g@— L) (2a)
(a — bL,(r))
Ly 1(r) = pLy(r) + (1 — 8)CkNm
e 4 e(“ — bL,(j)
+ 2 Zl ckN T3 o (2b)
i=

Here r represents the spatial coordinates of
a site in the two-dimensional grid. The dynamics
in each point in space is governed by model (1).
But now each site is coupled to its four nearest
neighbors. Such a coupling can be understood as
follows. Each point in space corresponds to
a plant. The biomass at this point becomes litter
at the end of the growing season, and a fraction
1 — & of such litter remains in the same site inhi-
biting plant growth the next year, while a fraction
¢ falls down to the nearest-neighbor sites affecting
growth there. In eqn (2b), j indicates one of the
four nearest-neighbor sites.

The first question we want to answer with
model (2) is how the perception of chaos depends
on the spatial scale. It is important to consider
the relationships among spatial scales, as land-
scape-level patterns can be explained by local
disturbance and patch dynamics (see Levin, 1992;
Wu & Levin, 1994). As mentioned before, Tilman
& Wedin (1991) have suggested that since litter
inhibition is a local process, it may be difficult to
detect it at larger scales even when the dynamics
are chaotic. We address this question by calculat-
ing the coefficient of variation (CV = s.b./mean)
of the dynamics of both biomass and litter for
increasingly large clusters of sites, the smallest
cluster containing 1 site, the next one 2 x 2 sites,
3x 3 sites and so on. Parameters were in the
region that generates chaos. In Fig. 6 we plot CV
as a function of the size of the cluster for which
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FIG. 6. CV (S.D./mean) of biomass (@@®) and litter (AA)
vs. the spatial scale of the temporal series for the spatially
extended model (2). After 1500 transients are discarded we
use the following 500 iterations to calculate the CV of the
fluctuations in biomass and litter. The smallest spatial scale
is that of one site. Then we repeat the process for the
averaged biomass and litter at clusters of sizes 2 x 2, 3 x 3,
and so on. Continuous lines are power-law fits of the data.
The two insets are examples of the temporal series from
which the CV is calculated at the scale of a single site, and of
a cluster of 6 x 6 sites. Biomass (——), and litter (-~ ) are
plotted as a function of time. The effect of space in stabilizing
the dynamics is evident. Chaos introduces asynchronous
fluctuations, and so a kind of stability due to an averaging
effect of the fluctuations at different sites. Parameters are
a=5b=0.1,¢=05k=04,p=0.5,and ¢ = 0.1. Lattice
size is 50 x 50.

the dynamics are averaged. The observed points
fit well with a power law. As noticed, there is a
fast decay of the CV as the spatial scale is in-
creased, followed by a plateau, a region with long
tails where the CV is almost independent of fur-
ther increases in area. In other words, the percep-
tion of the variation is highly dependent on the
size of the cluster in which biomass is measured.
Thus, even when highly unstable fluctuations are
observed at a local site, one would have a percep-
tion of a stationary constancy with some devi-
ations at a relatively larger (but still small)
spatial scale (see insets of Fig. 6). This is due to
the averaging effect of considering different sites
together linked to the chaotic nature of local
fluctuations.

The next question we want to answer is how
the inhibitory effect of litter can create spatial

heterogeneity: This is an important question
since spatial heterogeneity could lead to the high
levels of diversity observed in undisturbed grass-
lands. For different nitrogen values (and so differ-
ent temporal regimes), we want to have some
measurements of heterogeneity. In particular, we
are interested in sites empty of living biomass.
These litter-covered sites constitute gaps because
they can be colonized by species which cannot
grow under the biomass of the dominant grasses.
In Fig. 7, we show two snapshots of our spatial
system, each corresponding to one iteration after
some transients have been discarded. Both snap-
shots differ in the nitrogen value used (one corre-
sponding to the beginning of the chaotic region,
and the other one well inside the chaotic domain).
We consider that a site (or a cluster of sites) is
a gap when its biomassis <1 gm™2 As can be
seen, litter depression of biomass can generate
gaps of different sizes, which are more frequent as
the dynamics become more chaotic.

To further analyse the role of litter as a source
of gaps, we plot the number of gaps, their total
area within the grid, and the CV of their sizes
over the range of nitrogen values [see
Fig. 8(a)—(c)]. All these values are calculated for
a single time step and then successive years are
averaged. The persistence value (p = 0.5) is the
same as in Fig. 1(b), so by comparing Fig. 8 and
Fig. 1(b) we can compare the degree of spatial
heterogeneity with the nature of the dynamics
(stationary, periodic or chaotic). Note that
Fig. 1(b) corresponds to the non-spatial model
(1). While the local dynamics (i.e. the dynamics at
a site) in a spatial counterpart are qualitatively
similar to the non-spatial model for the same
parameters (the same bifurcation scenario is
observed), small differences exist. In particular,
some of the periodic windows observed in
the uncoupled map are destroyed in the spatial
version.

For each nitrogen value we run model (2).
After a certain number of transients are dis-
carded, we calculate the number of gaps, total
area of gaps and CV of gaps. What we plot in
Fig. 8 is an average of such values for a given
number of iterations. For stationary and periodic
dynamics, the three variables are close to zero.
Suddenly, once the chaotic domain has been en-
tered, a well-defined transition takes place. The
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F1G. 7. Spatial heterogeneity generated by model (2). The snapshots correspond to a certain iteration after transients have
been discarded. Black points are sites at which the inhibitory effect of litter has generated a local biomass

<lgm™2

Such sites can be colonized by other grasses. Both figures correspond to different nitrogen values.

(a) N = 1080, corresponding to the beginning of the chaotic domain, and (b) N = 1300, corresponding to a more chaotic
domain. Other variables as in Fig. 6 but lattice size is 300 x 300.

three variables increase suddenly. This behavior
is similar to that of physical systems near a phase
transition. There is a qualitative, discontinuous
change in the properties of the system, which is
identified with an order parameter (Schroeder,
1991; Solé et al., 1996).

The previous result suggests that chaos is an
important source of spatial heterogeneity in this
model. Below the chaotic domain space is almost
homogeneous. At a single iteration all the sites
have similar biomass values, and these values are
bigger than zero. But beyond the critical point
(the edge of chaos), there is a qualitative change
in behavior. On average, there are more gaps and
their distribution is much more heterogeneous
(there is more variability in gap size). The quali-
tative nature of these results does not depend on
whether the particular value of the cutoff used to
define a gap (1 gm ™2 in the present example) is
changed.

To sum up, chaos can arise for some particular
litter persistence rates and dependences between
such rates and litter amounts. At a spatial scale,
even when chaos can be hard to detect, it creates
self-disturbances. The self-disturbances lead to
spatial heterogeneity which is believed to be
related to species diversity. Empirical informa-
tion is still needed to determine whether litter per-
sistence values are within the range of values

inducing chaos, and hence capable of generating
the type of spatial heterogeneity depicted in this
paper. Our scenario is supported, though, by the
results by Tilman & Wedin (1991) finding chaos
in perennial grasses.

4. Discussion

Much progress has been made in understand-
ing the role of disturbances in conditioning
community diversity (e.g. Connell, 1978; Pickett
& White, 1985; Willig & Walker, 1999). Distur-
bances are often viewed as discrete forces trigger-
ing a chain of events within the community which
will ultimately determine its composition and
diversity. For example, small-scale disturbances
can be important mechanisms for maintaining
species richness by producing a mosaic of patches
at different stages of succession that vary in
species composition (Wu & Levin, 1994). These
patches often provide microsites for the establish-
ment of fugitive species in areas otherwise domin-
ated by superior competitors (e.g. Yodzis, 1986).
As a consequence, community diversity and het-
erogeneity are enhanced (e.g. Picket & White,
1985).

Heterogeneity has frequently been attributed
to external disturbances (Connell, 1978). While
this happens to be true for a large number of
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systems, other systems may maintain high het-
erogeneity even in the absence of external per-
turbations. In other words, the intrinsic dynamics
of a community can create heterogeneity and
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hence maintain high levels of diversity (Bas-
compte et al., 1993). An excellent example is the
application of critical phenomena to the study of
gap formation in tropical forests. It seems that
tropical forests behave as dynamic systems at
a critical point at which “tree-avalanches” of all
sizes are observed. Power laws in the size fre-
quency of the gaps created by these avalanches
are observed, and the suggestion is that such
intrinsic dynamics is very important for the
maintenance of diversity in the forest community
(Sole & Manrubia, 1995a,b). Heterogeneity is
still the key to the high diversity levels observed.
But the crucial difference is that it is intrinsically
rather than extrinsically generated.

Besides tropical forests, internal disturbances
can occur in a number of other ecosystems (e.g.
see Pickett & White, 1985; Frelich & Reich,
1998). For example, it is well known that litter
accumulation can have profound effects on the
dynamics and structure of many plant communi-
ties (reviewed by Facelli & Picket, 1991). In this
paper, we have focused on a particular kind of
internal disturbances, the self-disturbances,
which have to do with the negative impacts that
individuals of a particular species can cause
themselves due to their own growth. Specifically,
we have modeled the processes of biomass
growth and litter production of the grass species
that dominate the tallgrass prairies of North
America. Our present results extend and general-
ize the importance of self-disturbances in promot-
ing and maintaining spatial heterogeneity.

Litter has an inhibitory effect on subsequent
biomass growth of the grasses that contribute to
most of its production. This delayed inhibitory

]

|

F1G. 8. Number of gaps (a), total area of gaps (b), and CV
of gaps (c) as a function of total soil nitrogen for the spatially
extended model (2). All three variables are measures of
spatial heterogeneity induced by the inhibitory effects of
litter on biomass. Same parameters as in Fig. 7. Figure 1(b)
shows the non-spatial model for these parameter values, so
the behavior of the present figure can be compared with
Fig. 1(b) to see how the structural properties are related to
the kind of dynamics. The parameter domain giving place to
steady state, cycles and chaos is delimited. The chaotic
domain starts at a value for total soil nitrogen of N = 855.
As observed, a well-defined transition takes place at the
onset of chaos for all three parameters. The chaotic region is
the one in which the highest heterogeneity values are ob-
served.
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effect has been proven to be a source of determin-
istic chaos and cycles (Tilman & Wedin, 1991,
and this paper). The introduction of explicit
space into these models allows us to explore
spatial considerations. At higher spatial scales,
local chaos is difficult to detect because of the
asynchrony in the fluctuations at different local
sites. The question now is why this averaging
effect is so powerful in the present scenario. The
answer is, because of chaos by itself. It has been
proven that despite its instability at local scales,
deterministic chaos is a powerful source of stabil-
ity at higher scales (Allen et al., 1993; Bascompte
& Sol¢, 1995). This counterintuitive property has
been termed chaotic stability (Solé et al., 1992;
Bascompte & Solg, 1995), and can be understood
as follows. Due to its property of dependence on
initial conditions, local sites fluctuate in total
asynchrony even when biomass values were very
close at some initial condition (Sol¢ & Bas-
compte, 1994; Bascompte & Solé, 1995). Thus,
the same mechanism producing instability at
local scales is the source of stability at global
ones.

One relevant question is whether or not the
nitrogen levels necessary to generate chaos in our
model are compatible with the values observed in
nature. The Tilman and Wedin model shows
chaos for nitrogen values higher than or equal to
700 mg per kg of soils [see Fig. 2(d) in Tilman
& Wedin, 1991]. Similar results have been ob-
tained here for appropriate litter persistence
values [see Figs 1(b) and 5(b)]. Several un-
manipulated experimental fields at the Cedar
Creek Natural History Area, Minnesota, present
soil nitrogen levels that are within the range of
situations leading to chaos in the model. Specifi-
cally, four fields studied by Inouye et al. (1987),
namely fields 32, 35, 47, and 72 have an average
nitrogen content of 706-870 mgkg~! of soil (see
Table 1 in Inouye et al., 1987). Moreover, in 18
out of the 22 unmanipulated fields analysed by
these authors, the maximum value of soil nitro-
gen recorded was between 750 and 1873 mgkg ™!
of soil. Similarly, in relation to the tallgrass
prairies, several studies also indicate that their
soils present nitrogen levels within the range of
values leading to chaos in the model. For
example, Rosburg & Glenn-Lewin (1996) have
estimated the amount of soil nitrogen in several

native tallgrass prairies and found that they were
within the range of 700-1400 mgkg ™! of soil.

The same mechanism generating cycles and
chaos, i.e. the inhibitory effect of litter, is also
responsible for the generation of spatial hetero-
geneity, i.e. gaps within the community. Accord-
ingly, the effects of litter on community structure
seem to resemble those caused by small-scale
disturbances that are out of phase to each other.
This may account for the observation that
tallgrass communities show higher community
heterogeneity and diversity when left unburnt
than when they are affected by frequent fires, in
a conspicuous departure of the IDH (Collins
et al., 1992,1995). In the absence of fire, litter
accumulation provides gaps for the establish-
ment of inferior competitive species, such as forbs
and woody perennials. The strong capacity of the
dominant grasses to regrow after fire allows them
to rapidly occupy the available space, leaving few
opportunities for the growth of other less-com-
petitive species (see Abrams & Hulbert, 1987,
Gibson & Hulbert, 1987).

One has to keep in mind, however, that current
patterns in tallgrass prairies are not necessarily
the same as historical patterns. For example, the
current accumulation of litter which occurs in the
absence of grazing may have been very different
when the Great Plains was populated with huge
herds of grazing animals. This may complicate
our understanding of the evolutionary forces
relating patterns and processes in such com-
munities.

When an external disturbance is highly likely
in an ecosystem, some species may have evolved
traits aimed at providing them with resistance to
such disturbances (e.g. the capability of re-
sprouting after fire). Such species would possess
a clear advantage over other species that are
sensitive to the disturbances, as long as these
events occur with an adequate frequency. How-
ever, if there is a delay in the occurrence of the
disturbances, the same traits enhancing the dis-
turbance, and so benefiting to the most competi-
tive species, can have a negative effect on them.
These traits act as self-disturbances, perturba-
tions generated by the dynamics of the species
that dominate the community. The self-distur-
bance hypothesis (SDH) presented in this paper is
aimed at communities where the dominant
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species have traits that either benefit them by
enhancing the occurrence of external distur-
bances that are harmful to their competitors, or
impair their own growth in the absence of such
external disturbances. Specifically, SDH states
that the observed levels of spatial heterogeneity
(and diversity) in such situations will be deter-
mined by the relative contribution of self-distur-
bances and external disturbances. In this paper,
we have simulated the dynamics of the dominant
tallgrass prairies in the absence of external distur-
bances. However, self-disturbances can also
generate high heterogeneity levels if external per-
turbations are sufficiently spaced in time, as can
occur in communities experiencing a natural re-
gime of external disturbances. Thus, as stated by
the SDH defined here, the observed heterogen-
eity levels will depend on the relative importance
of self-disturbances vs. other disturbances.

It is well known that diversity is associated
with spatial heterogeneity, but usually an ex-
ternal source for such heterogeneity is assumed.
Some systems, due to nonlinear interaction
terms, are able to generate heterogeneity through
time and space that can be of paramount import-
ance for the maintenance of diversity. This, to-
gether with the fact that the results of external
perturbations depend strongly on which species
are the ones benefited, is important in under-
standing the interrelationship between diversity,
heterogeneity, intrinsic dynamics, and responses
to external perturbations.
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